![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbagconclOLD | Structured version Visualization version GIF version |
Description: Obsolete version of psrbagconcl 21707 as of 6-Aug-2024. (Contributed by Mario Carneiro, 29-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
psrbag.d | β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} |
psrbagconf1o.s | β’ π = {π¦ β π· β£ π¦ βr β€ πΉ} |
Ref | Expression |
---|---|
psrbagconclOLD | β’ ((πΌ β π β§ πΉ β π· β§ π β π) β (πΉ βf β π) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 β’ ((πΌ β π β§ πΉ β π· β§ π β π) β πΌ β π) | |
2 | simp2 1136 | . . 3 β’ ((πΌ β π β§ πΉ β π· β§ π β π) β πΉ β π·) | |
3 | simp3 1137 | . . . . . 6 β’ ((πΌ β π β§ πΉ β π· β§ π β π) β π β π) | |
4 | breq1 5151 | . . . . . . 7 β’ (π¦ = π β (π¦ βr β€ πΉ β π βr β€ πΉ)) | |
5 | psrbagconf1o.s | . . . . . . 7 β’ π = {π¦ β π· β£ π¦ βr β€ πΉ} | |
6 | 4, 5 | elrab2 3686 | . . . . . 6 β’ (π β π β (π β π· β§ π βr β€ πΉ)) |
7 | 3, 6 | sylib 217 | . . . . 5 β’ ((πΌ β π β§ πΉ β π· β§ π β π) β (π β π· β§ π βr β€ πΉ)) |
8 | 7 | simpld 494 | . . . 4 β’ ((πΌ β π β§ πΉ β π· β§ π β π) β π β π·) |
9 | psrbag.d | . . . . 5 β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} | |
10 | 9 | psrbagfOLD 21692 | . . . 4 β’ ((πΌ β π β§ π β π·) β π:πΌβΆβ0) |
11 | 1, 8, 10 | syl2anc 583 | . . 3 β’ ((πΌ β π β§ πΉ β π· β§ π β π) β π:πΌβΆβ0) |
12 | 7 | simprd 495 | . . 3 β’ ((πΌ β π β§ πΉ β π· β§ π β π) β π βr β€ πΉ) |
13 | 9 | psrbagconOLD 21704 | . . 3 β’ ((πΌ β π β§ (πΉ β π· β§ π:πΌβΆβ0 β§ π βr β€ πΉ)) β ((πΉ βf β π) β π· β§ (πΉ βf β π) βr β€ πΉ)) |
14 | 1, 2, 11, 12, 13 | syl13anc 1371 | . 2 β’ ((πΌ β π β§ πΉ β π· β§ π β π) β ((πΉ βf β π) β π· β§ (πΉ βf β π) βr β€ πΉ)) |
15 | breq1 5151 | . . 3 β’ (π¦ = (πΉ βf β π) β (π¦ βr β€ πΉ β (πΉ βf β π) βr β€ πΉ)) | |
16 | 15, 5 | elrab2 3686 | . 2 β’ ((πΉ βf β π) β π β ((πΉ βf β π) β π· β§ (πΉ βf β π) βr β€ πΉ)) |
17 | 14, 16 | sylibr 233 | 1 β’ ((πΌ β π β§ πΉ β π· β§ π β π) β (πΉ βf β π) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 {crab 3431 class class class wbr 5148 β‘ccnv 5675 β cima 5679 βΆwf 6539 (class class class)co 7412 βf cof 7672 βr cofr 7673 βm cmap 8824 Fincfn 8943 β€ cle 11254 β cmin 11449 βcn 12217 β0cn0 12477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-ofr 7675 df-om 7860 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 |
This theorem is referenced by: psrass1lemOLD 21713 |
Copyright terms: Public domain | W3C validator |