![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbagconclOLD | Structured version Visualization version GIF version |
Description: Obsolete version of psrbagconcl 21860 as of 6-Aug-2024. (Contributed by Mario Carneiro, 29-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
psrbagconf1o.s | ⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} |
Ref | Expression |
---|---|
psrbagconclOLD | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → (𝐹 ∘f − 𝑋) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝐼 ∈ 𝑉) | |
2 | simp2 1135 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝐹 ∈ 𝐷) | |
3 | simp3 1136 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
4 | breq1 5145 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → (𝑦 ∘r ≤ 𝐹 ↔ 𝑋 ∘r ≤ 𝐹)) | |
5 | psrbagconf1o.s | . . . . . . 7 ⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} | |
6 | 4, 5 | elrab2 3683 | . . . . . 6 ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ 𝐷 ∧ 𝑋 ∘r ≤ 𝐹)) |
7 | 3, 6 | sylib 217 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → (𝑋 ∈ 𝐷 ∧ 𝑋 ∘r ≤ 𝐹)) |
8 | 7 | simpld 494 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐷) |
9 | psrbag.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
10 | 9 | psrbagfOLD 21845 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐷) → 𝑋:𝐼⟶ℕ0) |
11 | 1, 8, 10 | syl2anc 583 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝑋:𝐼⟶ℕ0) |
12 | 7 | simprd 495 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∘r ≤ 𝐹) |
13 | 9 | psrbagconOLD 21857 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝑋:𝐼⟶ℕ0 ∧ 𝑋 ∘r ≤ 𝐹)) → ((𝐹 ∘f − 𝑋) ∈ 𝐷 ∧ (𝐹 ∘f − 𝑋) ∘r ≤ 𝐹)) |
14 | 1, 2, 11, 12, 13 | syl13anc 1370 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f − 𝑋) ∈ 𝐷 ∧ (𝐹 ∘f − 𝑋) ∘r ≤ 𝐹)) |
15 | breq1 5145 | . . 3 ⊢ (𝑦 = (𝐹 ∘f − 𝑋) → (𝑦 ∘r ≤ 𝐹 ↔ (𝐹 ∘f − 𝑋) ∘r ≤ 𝐹)) | |
16 | 15, 5 | elrab2 3683 | . 2 ⊢ ((𝐹 ∘f − 𝑋) ∈ 𝑆 ↔ ((𝐹 ∘f − 𝑋) ∈ 𝐷 ∧ (𝐹 ∘f − 𝑋) ∘r ≤ 𝐹)) |
17 | 14, 16 | sylibr 233 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → (𝐹 ∘f − 𝑋) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 {crab 3427 class class class wbr 5142 ◡ccnv 5671 “ cima 5675 ⟶wf 6538 (class class class)co 7414 ∘f cof 7677 ∘r cofr 7678 ↑m cmap 8838 Fincfn 8957 ≤ cle 11273 − cmin 11468 ℕcn 12236 ℕ0cn0 12496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-ofr 7680 df-om 7865 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 |
This theorem is referenced by: psrass1lemOLD 21867 |
Copyright terms: Public domain | W3C validator |