![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logblt | Structured version Visualization version GIF version |
Description: The general logarithm function is strictly monotone/increasing. Property 2 of [Cohen4] p. 377. See logltb 24868. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
Ref | Expression |
---|---|
logblt | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (𝐵 logb 𝑋) < (𝐵 logb 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1130 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝑋 ∈ ℝ+) | |
2 | 1 | relogcld 24891 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (log‘𝑋) ∈ ℝ) |
3 | simp3 1131 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝑌 ∈ ℝ+) | |
4 | 3 | relogcld 24891 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (log‘𝑌) ∈ ℝ) |
5 | simp1 1129 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝐵 ∈ (ℤ≥‘2)) | |
6 | eluzelz 12107 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℤ) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝐵 ∈ ℤ) |
8 | 7 | zred 11941 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝐵 ∈ ℝ) |
9 | 1z 11866 | . . . . 5 ⊢ 1 ∈ ℤ | |
10 | 1p1e2 11616 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
11 | 10 | fveq2i 6548 | . . . . . 6 ⊢ (ℤ≥‘(1 + 1)) = (ℤ≥‘2) |
12 | 5, 11 | syl6eleqr 2896 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝐵 ∈ (ℤ≥‘(1 + 1))) |
13 | eluzp1l 12122 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(1 + 1))) → 1 < 𝐵) | |
14 | 9, 12, 13 | sylancr 587 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 1 < 𝐵) |
15 | 8, 14 | rplogcld 24897 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (log‘𝐵) ∈ ℝ+) |
16 | 2, 4, 15 | ltdiv1d 12330 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → ((log‘𝑋) < (log‘𝑌) ↔ ((log‘𝑋) / (log‘𝐵)) < ((log‘𝑌) / (log‘𝐵)))) |
17 | logltb 24868 | . . 3 ⊢ ((𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (log‘𝑋) < (log‘𝑌))) | |
18 | 17 | 3adant1 1123 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (log‘𝑋) < (log‘𝑌))) |
19 | relogbval 25035 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) | |
20 | 19 | 3adant3 1125 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
21 | relogbval 25035 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑌 ∈ ℝ+) → (𝐵 logb 𝑌) = ((log‘𝑌) / (log‘𝐵))) | |
22 | 21 | 3adant2 1124 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝐵 logb 𝑌) = ((log‘𝑌) / (log‘𝐵))) |
23 | 20, 22 | breq12d 4981 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → ((𝐵 logb 𝑋) < (𝐵 logb 𝑌) ↔ ((log‘𝑋) / (log‘𝐵)) < ((log‘𝑌) / (log‘𝐵)))) |
24 | 16, 18, 23 | 3bitr4d 312 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (𝐵 logb 𝑋) < (𝐵 logb 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 class class class wbr 4968 ‘cfv 6232 (class class class)co 7023 1c1 10391 + caddc 10393 < clt 10528 / cdiv 11151 2c2 11546 ℤcz 11835 ℤ≥cuz 12097 ℝ+crp 12243 logclog 24823 logb clogb 25027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-inf2 8957 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-pre-sup 10468 ax-addf 10469 ax-mulf 10470 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-fal 1538 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-iin 4834 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-of 7274 df-om 7444 df-1st 7552 df-2nd 7553 df-supp 7689 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-2o 7961 df-oadd 7964 df-er 8146 df-map 8265 df-pm 8266 df-ixp 8318 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-fsupp 8687 df-fi 8728 df-sup 8759 df-inf 8760 df-oi 8827 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-9 11561 df-n0 11752 df-z 11836 df-dec 11953 df-uz 12098 df-q 12202 df-rp 12244 df-xneg 12361 df-xadd 12362 df-xmul 12363 df-ioo 12596 df-ioc 12597 df-ico 12598 df-icc 12599 df-fz 12747 df-fzo 12888 df-fl 13016 df-mod 13092 df-seq 13224 df-exp 13284 df-fac 13488 df-bc 13517 df-hash 13545 df-shft 14264 df-cj 14296 df-re 14297 df-im 14298 df-sqrt 14432 df-abs 14433 df-limsup 14666 df-clim 14683 df-rlim 14684 df-sum 14881 df-ef 15258 df-sin 15260 df-cos 15261 df-pi 15263 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-mulr 16412 df-starv 16413 df-sca 16414 df-vsca 16415 df-ip 16416 df-tset 16417 df-ple 16418 df-ds 16420 df-unif 16421 df-hom 16422 df-cco 16423 df-rest 16529 df-topn 16530 df-0g 16548 df-gsum 16549 df-topgen 16550 df-pt 16551 df-prds 16554 df-xrs 16608 df-qtop 16613 df-imas 16614 df-xps 16616 df-mre 16690 df-mrc 16691 df-acs 16693 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-submnd 17779 df-mulg 17986 df-cntz 18192 df-cmn 18639 df-psmet 20223 df-xmet 20224 df-met 20225 df-bl 20226 df-mopn 20227 df-fbas 20228 df-fg 20229 df-cnfld 20232 df-top 21190 df-topon 21207 df-topsp 21229 df-bases 21242 df-cld 21315 df-ntr 21316 df-cls 21317 df-nei 21394 df-lp 21432 df-perf 21433 df-cn 21523 df-cnp 21524 df-haus 21611 df-tx 21858 df-hmeo 22051 df-fil 22142 df-fm 22234 df-flim 22235 df-flf 22236 df-xms 22617 df-ms 22618 df-tms 22619 df-cncf 23173 df-limc 24151 df-dv 24152 df-log 24825 df-logb 25028 |
This theorem is referenced by: dya2ub 31141 logbpw2m1 44130 |
Copyright terms: Public domain | W3C validator |