![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpcnne0d | Structured version Visualization version GIF version |
Description: A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpcnne0d | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpcnd 13077 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 1 | rpne0d 13080 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) |
4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 ℂcc 11151 0cc0 11153 ℝ+crp 13032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-addrcl 11214 ax-rnegex 11224 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-rp 13033 |
This theorem is referenced by: expcnv 15897 mertenslem1 15917 divgcdcoprm0 16699 ovolscalem1 25562 aalioulem2 26390 aalioulem3 26391 dvsqrt 26799 cxpcn3lem 26805 relogbval 26830 relogbcl 26831 nnlogbexp 26839 divsqrtsumlem 27038 logexprlim 27284 2lgslem3b 27456 2lgslem3c 27457 2lgslem3d 27458 chebbnd1lem3 27530 chebbnd1 27531 chtppilimlem1 27532 chtppilimlem2 27533 chebbnd2 27536 chpchtlim 27538 chpo1ub 27539 rplogsumlem1 27543 rplogsumlem2 27544 rpvmasumlem 27546 dchrvmasumlem1 27554 dchrvmasum2lem 27555 dchrvmasumlem2 27557 dchrisum0fno1 27570 dchrisum0lem1b 27574 dchrisum0lem1 27575 dchrisum0lem2a 27576 dchrisum0lem2 27577 dchrisum0lem3 27578 rplogsum 27586 mulogsum 27591 mulog2sumlem1 27593 selberglem1 27604 pntrmax 27623 pntpbnd1a 27644 pntibndlem2 27650 pntlemc 27654 pntlemb 27656 pntlemn 27659 pntlemr 27661 pntlemj 27662 pntlemf 27664 pntlemk 27665 pntlemo 27666 pnt2 27672 bcm1n 32803 jm2.21 42983 stoweidlem25 45981 stoweidlem42 45998 wallispilem4 46024 stirlinglem10 46039 fourierdlem39 46102 lighneallem3 47532 dignn0flhalflem1 48465 dignn0flhalflem2 48466 itschlc0xyqsol1 48616 |
Copyright terms: Public domain | W3C validator |