![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpcnne0d | Structured version Visualization version GIF version |
Description: A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpcnne0d | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpcnd 12283 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 1 | rpne0d 12286 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) |
4 | 2, 3 | jca 512 | 1 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2081 ≠ wne 2984 ℂcc 10381 0cc0 10383 ℝ+crp 12239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-resscn 10440 ax-1cn 10441 ax-addrcl 10444 ax-rnegex 10454 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-po 5362 df-so 5363 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-ltxr 10526 df-rp 12240 |
This theorem is referenced by: expcnv 15052 mertenslem1 15073 divgcdcoprm0 15838 ovolscalem1 23797 aalioulem2 24605 aalioulem3 24606 dvsqrt 25004 cxpcn3lem 25009 relogbval 25031 relogbcl 25032 nnlogbexp 25040 divsqrtsumlem 25239 logexprlim 25483 2lgslem3b 25655 2lgslem3c 25656 2lgslem3d 25657 chebbnd1lem3 25729 chebbnd1 25730 chtppilimlem1 25731 chtppilimlem2 25732 chebbnd2 25735 chpchtlim 25737 chpo1ub 25738 rplogsumlem1 25742 rplogsumlem2 25743 rpvmasumlem 25745 dchrvmasumlem1 25753 dchrvmasum2lem 25754 dchrvmasumlem2 25756 dchrisum0fno1 25769 dchrisum0lem1b 25773 dchrisum0lem1 25774 dchrisum0lem2a 25775 dchrisum0lem2 25776 dchrisum0lem3 25777 rplogsum 25785 mulogsum 25790 mulog2sumlem1 25792 selberglem1 25803 pntrmax 25822 pntpbnd1a 25843 pntibndlem2 25849 pntlemc 25853 pntlemb 25855 pntlemn 25858 pntlemr 25860 pntlemj 25861 pntlemf 25863 pntlemk 25864 pntlemo 25865 pnt2 25871 bcm1n 30204 jm2.21 39076 stoweidlem25 41852 stoweidlem42 41869 wallispilem4 41895 stirlinglem10 41910 fourierdlem39 41973 lighneallem3 43254 dignn0flhalflem1 44156 dignn0flhalflem2 44157 itschlc0xyqsol1 44234 |
Copyright terms: Public domain | W3C validator |