Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpcnne0d | Structured version Visualization version GIF version |
Description: A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpcnne0d | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpcnd 12703 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 1 | rpne0d 12706 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) |
4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ℂcc 10800 0cc0 10802 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-rp 12660 |
This theorem is referenced by: expcnv 15504 mertenslem1 15524 divgcdcoprm0 16298 ovolscalem1 24582 aalioulem2 25398 aalioulem3 25399 dvsqrt 25800 cxpcn3lem 25805 relogbval 25827 relogbcl 25828 nnlogbexp 25836 divsqrtsumlem 26034 logexprlim 26278 2lgslem3b 26450 2lgslem3c 26451 2lgslem3d 26452 chebbnd1lem3 26524 chebbnd1 26525 chtppilimlem1 26526 chtppilimlem2 26527 chebbnd2 26530 chpchtlim 26532 chpo1ub 26533 rplogsumlem1 26537 rplogsumlem2 26538 rpvmasumlem 26540 dchrvmasumlem1 26548 dchrvmasum2lem 26549 dchrvmasumlem2 26551 dchrisum0fno1 26564 dchrisum0lem1b 26568 dchrisum0lem1 26569 dchrisum0lem2a 26570 dchrisum0lem2 26571 dchrisum0lem3 26572 rplogsum 26580 mulogsum 26585 mulog2sumlem1 26587 selberglem1 26598 pntrmax 26617 pntpbnd1a 26638 pntibndlem2 26644 pntlemc 26648 pntlemb 26650 pntlemn 26653 pntlemr 26655 pntlemj 26656 pntlemf 26658 pntlemk 26659 pntlemo 26660 pnt2 26666 bcm1n 31018 jm2.21 40732 stoweidlem25 43456 stoweidlem42 43473 wallispilem4 43499 stirlinglem10 43514 fourierdlem39 43577 lighneallem3 44947 dignn0flhalflem1 45849 dignn0flhalflem2 45850 itschlc0xyqsol1 46000 |
Copyright terms: Public domain | W3C validator |