| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpcnne0d | Structured version Visualization version GIF version | ||
| Description: A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpcnne0d | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpcnd 13004 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | 1 | rpne0d 13007 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 ℂcc 11073 0cc0 11075 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-addrcl 11136 ax-rnegex 11146 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-rp 12959 |
| This theorem is referenced by: expcnv 15837 mertenslem1 15857 divgcdcoprm0 16642 ovolscalem1 25421 aalioulem2 26248 aalioulem3 26249 dvsqrt 26658 cxpcn3lem 26664 relogbval 26689 relogbcl 26690 nnlogbexp 26698 divsqrtsumlem 26897 logexprlim 27143 2lgslem3b 27315 2lgslem3c 27316 2lgslem3d 27317 chebbnd1lem3 27389 chebbnd1 27390 chtppilimlem1 27391 chtppilimlem2 27392 chebbnd2 27395 chpchtlim 27397 chpo1ub 27398 rplogsumlem1 27402 rplogsumlem2 27403 rpvmasumlem 27405 dchrvmasumlem1 27413 dchrvmasum2lem 27414 dchrvmasumlem2 27416 dchrisum0fno1 27429 dchrisum0lem1b 27433 dchrisum0lem1 27434 dchrisum0lem2a 27435 dchrisum0lem2 27436 dchrisum0lem3 27437 rplogsum 27445 mulogsum 27450 mulog2sumlem1 27452 selberglem1 27463 pntrmax 27482 pntpbnd1a 27503 pntibndlem2 27509 pntlemc 27513 pntlemb 27515 pntlemn 27518 pntlemr 27520 pntlemj 27521 pntlemf 27523 pntlemk 27524 pntlemo 27525 pnt2 27531 bcm1n 32725 jm2.21 42990 stoweidlem25 46030 stoweidlem42 46047 wallispilem4 46073 stirlinglem10 46088 fourierdlem39 46151 lighneallem3 47612 dignn0flhalflem1 48608 dignn0flhalflem2 48609 itschlc0xyqsol1 48759 |
| Copyright terms: Public domain | W3C validator |