Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∧ wa 396
∈ wcel 2106 ≠
wne 2940 ℂcc 11110
0cc0 11112 ℝ+crp 12978 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-addrcl 11173 ax-rnegex 11183 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-rp 12979 |
This theorem is referenced by: expcnv
15814 mertenslem1
15834 divgcdcoprm0
16606 ovolscalem1
25254 aalioulem2
26070 aalioulem3
26071 dvsqrt
26474 cxpcn3lem
26479 relogbval
26501 relogbcl
26502 nnlogbexp
26510 divsqrtsumlem
26708 logexprlim
26952 2lgslem3b
27124 2lgslem3c
27125 2lgslem3d
27126 chebbnd1lem3
27198 chebbnd1
27199 chtppilimlem1
27200 chtppilimlem2
27201 chebbnd2
27204 chpchtlim
27206 chpo1ub
27207 rplogsumlem1
27211 rplogsumlem2
27212 rpvmasumlem
27214 dchrvmasumlem1
27222 dchrvmasum2lem
27223 dchrvmasumlem2
27225 dchrisum0fno1
27238 dchrisum0lem1b
27242 dchrisum0lem1
27243 dchrisum0lem2a
27244 dchrisum0lem2
27245 dchrisum0lem3
27246 rplogsum
27254 mulogsum
27259 mulog2sumlem1
27261 selberglem1
27272 pntrmax
27291 pntpbnd1a
27312 pntibndlem2
27318 pntlemc
27322 pntlemb
27324 pntlemn
27327 pntlemr
27329 pntlemj
27330 pntlemf
27332 pntlemk
27333 pntlemo
27334 pnt2
27340 bcm1n
32261 jm2.21
42035 stoweidlem25
45040 stoweidlem42
45057 wallispilem4
45083 stirlinglem10
45098 fourierdlem39
45161 lighneallem3
46574 dignn0flhalflem1
47389 dignn0flhalflem2
47390 itschlc0xyqsol1
47540 |