| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpcnne0d | Structured version Visualization version GIF version | ||
| Description: A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpcnne0d | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpcnd 12939 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | 1 | rpne0d 12942 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ℂcc 11007 0cc0 11009 ℝ+crp 12893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-addrcl 11070 ax-rnegex 11080 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-rp 12894 |
| This theorem is referenced by: expcnv 15771 mertenslem1 15791 divgcdcoprm0 16576 ovolscalem1 25412 aalioulem2 26239 aalioulem3 26240 dvsqrt 26649 cxpcn3lem 26655 relogbval 26680 relogbcl 26681 nnlogbexp 26689 divsqrtsumlem 26888 logexprlim 27134 2lgslem3b 27306 2lgslem3c 27307 2lgslem3d 27308 chebbnd1lem3 27380 chebbnd1 27381 chtppilimlem1 27382 chtppilimlem2 27383 chebbnd2 27386 chpchtlim 27388 chpo1ub 27389 rplogsumlem1 27393 rplogsumlem2 27394 rpvmasumlem 27396 dchrvmasumlem1 27404 dchrvmasum2lem 27405 dchrvmasumlem2 27407 dchrisum0fno1 27420 dchrisum0lem1b 27424 dchrisum0lem1 27425 dchrisum0lem2a 27426 dchrisum0lem2 27427 dchrisum0lem3 27428 rplogsum 27436 mulogsum 27441 mulog2sumlem1 27443 selberglem1 27454 pntrmax 27473 pntpbnd1a 27494 pntibndlem2 27500 pntlemc 27504 pntlemb 27506 pntlemn 27509 pntlemr 27511 pntlemj 27512 pntlemf 27514 pntlemk 27515 pntlemo 27516 pnt2 27522 bcm1n 32738 jm2.21 42967 stoweidlem25 46006 stoweidlem42 46023 wallispilem4 46049 stirlinglem10 46064 fourierdlem39 46127 lighneallem3 47591 dignn0flhalflem1 48600 dignn0flhalflem2 48601 itschlc0xyqsol1 48751 |
| Copyright terms: Public domain | W3C validator |