| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpcnne0d | Structured version Visualization version GIF version | ||
| Description: A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpcnne0d | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpcnd 12931 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | 1 | rpne0d 12934 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ℂcc 10999 0cc0 11001 ℝ+crp 12885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-addrcl 11062 ax-rnegex 11072 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-rp 12886 |
| This theorem is referenced by: expcnv 15766 mertenslem1 15786 divgcdcoprm0 16571 ovolscalem1 25436 aalioulem2 26263 aalioulem3 26264 dvsqrt 26673 cxpcn3lem 26679 relogbval 26704 relogbcl 26705 nnlogbexp 26713 divsqrtsumlem 26912 logexprlim 27158 2lgslem3b 27330 2lgslem3c 27331 2lgslem3d 27332 chebbnd1lem3 27404 chebbnd1 27405 chtppilimlem1 27406 chtppilimlem2 27407 chebbnd2 27410 chpchtlim 27412 chpo1ub 27413 rplogsumlem1 27417 rplogsumlem2 27418 rpvmasumlem 27420 dchrvmasumlem1 27428 dchrvmasum2lem 27429 dchrvmasumlem2 27431 dchrisum0fno1 27444 dchrisum0lem1b 27448 dchrisum0lem1 27449 dchrisum0lem2a 27450 dchrisum0lem2 27451 dchrisum0lem3 27452 rplogsum 27460 mulogsum 27465 mulog2sumlem1 27467 selberglem1 27478 pntrmax 27497 pntpbnd1a 27518 pntibndlem2 27524 pntlemc 27528 pntlemb 27530 pntlemn 27533 pntlemr 27535 pntlemj 27536 pntlemf 27538 pntlemk 27539 pntlemo 27540 pnt2 27546 bcm1n 32769 jm2.21 43027 stoweidlem25 46063 stoweidlem42 46080 wallispilem4 46106 stirlinglem10 46121 fourierdlem39 46184 lighneallem3 47638 dignn0flhalflem1 48647 dignn0flhalflem2 48648 itschlc0xyqsol1 48798 |
| Copyright terms: Public domain | W3C validator |