| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpcnne0d | Structured version Visualization version GIF version | ||
| Description: A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpcnne0d | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpcnd 12997 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | 1 | rpne0d 13000 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ℂcc 11066 0cc0 11068 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-rp 12952 |
| This theorem is referenced by: expcnv 15830 mertenslem1 15850 divgcdcoprm0 16635 ovolscalem1 25414 aalioulem2 26241 aalioulem3 26242 dvsqrt 26651 cxpcn3lem 26657 relogbval 26682 relogbcl 26683 nnlogbexp 26691 divsqrtsumlem 26890 logexprlim 27136 2lgslem3b 27308 2lgslem3c 27309 2lgslem3d 27310 chebbnd1lem3 27382 chebbnd1 27383 chtppilimlem1 27384 chtppilimlem2 27385 chebbnd2 27388 chpchtlim 27390 chpo1ub 27391 rplogsumlem1 27395 rplogsumlem2 27396 rpvmasumlem 27398 dchrvmasumlem1 27406 dchrvmasum2lem 27407 dchrvmasumlem2 27409 dchrisum0fno1 27422 dchrisum0lem1b 27426 dchrisum0lem1 27427 dchrisum0lem2a 27428 dchrisum0lem2 27429 dchrisum0lem3 27430 rplogsum 27438 mulogsum 27443 mulog2sumlem1 27445 selberglem1 27456 pntrmax 27475 pntpbnd1a 27496 pntibndlem2 27502 pntlemc 27506 pntlemb 27508 pntlemn 27511 pntlemr 27513 pntlemj 27514 pntlemf 27516 pntlemk 27517 pntlemo 27518 pnt2 27524 bcm1n 32718 jm2.21 42983 stoweidlem25 46023 stoweidlem42 46040 wallispilem4 46066 stirlinglem10 46081 fourierdlem39 46144 lighneallem3 47608 dignn0flhalflem1 48604 dignn0flhalflem2 48605 itschlc0xyqsol1 48755 |
| Copyright terms: Public domain | W3C validator |