![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpcnne0d | Structured version Visualization version GIF version |
Description: A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpcnne0d | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpcnd 13101 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 1 | rpne0d 13104 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) |
4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 ℂcc 11182 0cc0 11184 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-rp 13058 |
This theorem is referenced by: expcnv 15912 mertenslem1 15932 divgcdcoprm0 16712 ovolscalem1 25567 aalioulem2 26393 aalioulem3 26394 dvsqrt 26802 cxpcn3lem 26808 relogbval 26833 relogbcl 26834 nnlogbexp 26842 divsqrtsumlem 27041 logexprlim 27287 2lgslem3b 27459 2lgslem3c 27460 2lgslem3d 27461 chebbnd1lem3 27533 chebbnd1 27534 chtppilimlem1 27535 chtppilimlem2 27536 chebbnd2 27539 chpchtlim 27541 chpo1ub 27542 rplogsumlem1 27546 rplogsumlem2 27547 rpvmasumlem 27549 dchrvmasumlem1 27557 dchrvmasum2lem 27558 dchrvmasumlem2 27560 dchrisum0fno1 27573 dchrisum0lem1b 27577 dchrisum0lem1 27578 dchrisum0lem2a 27579 dchrisum0lem2 27580 dchrisum0lem3 27581 rplogsum 27589 mulogsum 27594 mulog2sumlem1 27596 selberglem1 27607 pntrmax 27626 pntpbnd1a 27647 pntibndlem2 27653 pntlemc 27657 pntlemb 27659 pntlemn 27662 pntlemr 27664 pntlemj 27665 pntlemf 27667 pntlemk 27668 pntlemo 27669 pnt2 27675 bcm1n 32800 jm2.21 42951 stoweidlem25 45946 stoweidlem42 45963 wallispilem4 45989 stirlinglem10 46004 fourierdlem39 46067 lighneallem3 47481 dignn0flhalflem1 48349 dignn0flhalflem2 48350 itschlc0xyqsol1 48500 |
Copyright terms: Public domain | W3C validator |