Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpcnne0d | Structured version Visualization version GIF version |
Description: A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpcnne0d | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpcnd 12884 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 1 | rpne0d 12887 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) |
4 | 2, 3 | jca 513 | 1 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2106 ≠ wne 2941 ℂcc 10979 0cc0 10981 ℝ+crp 12840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-resscn 11038 ax-1cn 11039 ax-addrcl 11042 ax-rnegex 11052 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-po 5539 df-so 5540 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-pnf 11121 df-mnf 11122 df-ltxr 11124 df-rp 12841 |
This theorem is referenced by: expcnv 15680 mertenslem1 15700 divgcdcoprm0 16472 ovolscalem1 24787 aalioulem2 25603 aalioulem3 25604 dvsqrt 26005 cxpcn3lem 26010 relogbval 26032 relogbcl 26033 nnlogbexp 26041 divsqrtsumlem 26239 logexprlim 26483 2lgslem3b 26655 2lgslem3c 26656 2lgslem3d 26657 chebbnd1lem3 26729 chebbnd1 26730 chtppilimlem1 26731 chtppilimlem2 26732 chebbnd2 26735 chpchtlim 26737 chpo1ub 26738 rplogsumlem1 26742 rplogsumlem2 26743 rpvmasumlem 26745 dchrvmasumlem1 26753 dchrvmasum2lem 26754 dchrvmasumlem2 26756 dchrisum0fno1 26769 dchrisum0lem1b 26773 dchrisum0lem1 26774 dchrisum0lem2a 26775 dchrisum0lem2 26776 dchrisum0lem3 26777 rplogsum 26785 mulogsum 26790 mulog2sumlem1 26792 selberglem1 26803 pntrmax 26822 pntpbnd1a 26843 pntibndlem2 26849 pntlemc 26853 pntlemb 26855 pntlemn 26858 pntlemr 26860 pntlemj 26861 pntlemf 26863 pntlemk 26864 pntlemo 26865 pnt2 26871 bcm1n 31467 jm2.21 41130 stoweidlem25 43954 stoweidlem42 43971 wallispilem4 43997 stirlinglem10 44012 fourierdlem39 44075 lighneallem3 45477 dignn0flhalflem1 46379 dignn0flhalflem2 46380 itschlc0xyqsol1 46530 |
Copyright terms: Public domain | W3C validator |