| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpcnne0d | Structured version Visualization version GIF version | ||
| Description: A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpcnne0d | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpcnd 13058 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | 1 | rpne0d 13061 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2933 ℂcc 11132 0cc0 11134 ℝ+crp 13013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-addrcl 11195 ax-rnegex 11205 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-rp 13014 |
| This theorem is referenced by: expcnv 15885 mertenslem1 15905 divgcdcoprm0 16689 ovolscalem1 25471 aalioulem2 26298 aalioulem3 26299 dvsqrt 26708 cxpcn3lem 26714 relogbval 26739 relogbcl 26740 nnlogbexp 26748 divsqrtsumlem 26947 logexprlim 27193 2lgslem3b 27365 2lgslem3c 27366 2lgslem3d 27367 chebbnd1lem3 27439 chebbnd1 27440 chtppilimlem1 27441 chtppilimlem2 27442 chebbnd2 27445 chpchtlim 27447 chpo1ub 27448 rplogsumlem1 27452 rplogsumlem2 27453 rpvmasumlem 27455 dchrvmasumlem1 27463 dchrvmasum2lem 27464 dchrvmasumlem2 27466 dchrisum0fno1 27479 dchrisum0lem1b 27483 dchrisum0lem1 27484 dchrisum0lem2a 27485 dchrisum0lem2 27486 dchrisum0lem3 27487 rplogsum 27495 mulogsum 27500 mulog2sumlem1 27502 selberglem1 27513 pntrmax 27532 pntpbnd1a 27553 pntibndlem2 27559 pntlemc 27563 pntlemb 27565 pntlemn 27568 pntlemr 27570 pntlemj 27571 pntlemf 27573 pntlemk 27574 pntlemo 27575 pnt2 27581 bcm1n 32777 jm2.21 42985 stoweidlem25 46021 stoweidlem42 46038 wallispilem4 46064 stirlinglem10 46079 fourierdlem39 46142 lighneallem3 47588 dignn0flhalflem1 48562 dignn0flhalflem2 48563 itschlc0xyqsol1 48713 |
| Copyright terms: Public domain | W3C validator |