| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpcnne0d | Structured version Visualization version GIF version | ||
| Description: A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpcnne0d | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpcnd 12942 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | 1 | rpne0d 12945 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ≠ wne 2929 ℂcc 11015 0cc0 11017 ℝ+crp 12896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-addrcl 11078 ax-rnegex 11088 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-rp 12897 |
| This theorem is referenced by: expcnv 15778 mertenslem1 15798 divgcdcoprm0 16583 ovolscalem1 25461 aalioulem2 26288 aalioulem3 26289 dvsqrt 26698 cxpcn3lem 26704 relogbval 26729 relogbcl 26730 nnlogbexp 26738 divsqrtsumlem 26937 logexprlim 27183 2lgslem3b 27355 2lgslem3c 27356 2lgslem3d 27357 chebbnd1lem3 27429 chebbnd1 27430 chtppilimlem1 27431 chtppilimlem2 27432 chebbnd2 27435 chpchtlim 27437 chpo1ub 27438 rplogsumlem1 27442 rplogsumlem2 27443 rpvmasumlem 27445 dchrvmasumlem1 27453 dchrvmasum2lem 27454 dchrvmasumlem2 27456 dchrisum0fno1 27469 dchrisum0lem1b 27473 dchrisum0lem1 27474 dchrisum0lem2a 27475 dchrisum0lem2 27476 dchrisum0lem3 27477 rplogsum 27485 mulogsum 27490 mulog2sumlem1 27492 selberglem1 27503 pntrmax 27522 pntpbnd1a 27543 pntibndlem2 27549 pntlemc 27553 pntlemb 27555 pntlemn 27558 pntlemr 27560 pntlemj 27561 pntlemf 27563 pntlemk 27564 pntlemo 27565 pnt2 27571 bcm1n 32803 jm2.21 43151 stoweidlem25 46185 stoweidlem42 46202 wallispilem4 46228 stirlinglem10 46243 fourierdlem39 46306 lighneallem3 47769 dignn0flhalflem1 48777 dignn0flhalflem2 48778 itschlc0xyqsol1 48928 |
| Copyright terms: Public domain | W3C validator |