Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpcnne0d | Structured version Visualization version GIF version |
Description: A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpcnne0d | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpcnd 12774 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 1 | rpne0d 12777 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) |
4 | 2, 3 | jca 512 | 1 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ℂcc 10869 0cc0 10871 ℝ+crp 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-rp 12731 |
This theorem is referenced by: expcnv 15576 mertenslem1 15596 divgcdcoprm0 16370 ovolscalem1 24677 aalioulem2 25493 aalioulem3 25494 dvsqrt 25895 cxpcn3lem 25900 relogbval 25922 relogbcl 25923 nnlogbexp 25931 divsqrtsumlem 26129 logexprlim 26373 2lgslem3b 26545 2lgslem3c 26546 2lgslem3d 26547 chebbnd1lem3 26619 chebbnd1 26620 chtppilimlem1 26621 chtppilimlem2 26622 chebbnd2 26625 chpchtlim 26627 chpo1ub 26628 rplogsumlem1 26632 rplogsumlem2 26633 rpvmasumlem 26635 dchrvmasumlem1 26643 dchrvmasum2lem 26644 dchrvmasumlem2 26646 dchrisum0fno1 26659 dchrisum0lem1b 26663 dchrisum0lem1 26664 dchrisum0lem2a 26665 dchrisum0lem2 26666 dchrisum0lem3 26667 rplogsum 26675 mulogsum 26680 mulog2sumlem1 26682 selberglem1 26693 pntrmax 26712 pntpbnd1a 26733 pntibndlem2 26739 pntlemc 26743 pntlemb 26745 pntlemn 26748 pntlemr 26750 pntlemj 26751 pntlemf 26753 pntlemk 26754 pntlemo 26755 pnt2 26761 bcm1n 31116 jm2.21 40816 stoweidlem25 43566 stoweidlem42 43583 wallispilem4 43609 stirlinglem10 43624 fourierdlem39 43687 lighneallem3 45059 dignn0flhalflem1 45961 dignn0flhalflem2 45962 itschlc0xyqsol1 46112 |
Copyright terms: Public domain | W3C validator |