| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpcnne0d | Structured version Visualization version GIF version | ||
| Description: A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpcnne0d | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpcnd 12973 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | 1 | rpne0d 12976 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ℂcc 11042 0cc0 11044 ℝ+crp 12927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-addrcl 11105 ax-rnegex 11115 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-rp 12928 |
| This theorem is referenced by: expcnv 15806 mertenslem1 15826 divgcdcoprm0 16611 ovolscalem1 25390 aalioulem2 26217 aalioulem3 26218 dvsqrt 26627 cxpcn3lem 26633 relogbval 26658 relogbcl 26659 nnlogbexp 26667 divsqrtsumlem 26866 logexprlim 27112 2lgslem3b 27284 2lgslem3c 27285 2lgslem3d 27286 chebbnd1lem3 27358 chebbnd1 27359 chtppilimlem1 27360 chtppilimlem2 27361 chebbnd2 27364 chpchtlim 27366 chpo1ub 27367 rplogsumlem1 27371 rplogsumlem2 27372 rpvmasumlem 27374 dchrvmasumlem1 27382 dchrvmasum2lem 27383 dchrvmasumlem2 27385 dchrisum0fno1 27398 dchrisum0lem1b 27402 dchrisum0lem1 27403 dchrisum0lem2a 27404 dchrisum0lem2 27405 dchrisum0lem3 27406 rplogsum 27414 mulogsum 27419 mulog2sumlem1 27421 selberglem1 27432 pntrmax 27451 pntpbnd1a 27472 pntibndlem2 27478 pntlemc 27482 pntlemb 27484 pntlemn 27487 pntlemr 27489 pntlemj 27490 pntlemf 27492 pntlemk 27493 pntlemo 27494 pnt2 27500 bcm1n 32691 jm2.21 42956 stoweidlem25 45996 stoweidlem42 46013 wallispilem4 46039 stirlinglem10 46054 fourierdlem39 46117 lighneallem3 47581 dignn0flhalflem1 48577 dignn0flhalflem2 48578 itschlc0xyqsol1 48728 |
| Copyright terms: Public domain | W3C validator |