Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∧ wa 396
∈ wcel 2106 ≠
wne 2940 ℂcc 11110
0cc0 11112 ℝ+crp 12976 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-addrcl 11173 ax-rnegex 11183 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-ltxr 11255 df-rp 12977 |
This theorem is referenced by: expcnv
15812 mertenslem1
15832 divgcdcoprm0
16604 ovolscalem1
25037 aalioulem2
25853 aalioulem3
25854 dvsqrt
26257 cxpcn3lem
26262 relogbval
26284 relogbcl
26285 nnlogbexp
26293 divsqrtsumlem
26491 logexprlim
26735 2lgslem3b
26907 2lgslem3c
26908 2lgslem3d
26909 chebbnd1lem3
26981 chebbnd1
26982 chtppilimlem1
26983 chtppilimlem2
26984 chebbnd2
26987 chpchtlim
26989 chpo1ub
26990 rplogsumlem1
26994 rplogsumlem2
26995 rpvmasumlem
26997 dchrvmasumlem1
27005 dchrvmasum2lem
27006 dchrvmasumlem2
27008 dchrisum0fno1
27021 dchrisum0lem1b
27025 dchrisum0lem1
27026 dchrisum0lem2a
27027 dchrisum0lem2
27028 dchrisum0lem3
27029 rplogsum
27037 mulogsum
27042 mulog2sumlem1
27044 selberglem1
27055 pntrmax
27074 pntpbnd1a
27095 pntibndlem2
27101 pntlemc
27105 pntlemb
27107 pntlemn
27110 pntlemr
27112 pntlemj
27113 pntlemf
27115 pntlemk
27116 pntlemo
27117 pnt2
27123 bcm1n
32044 jm2.21
41815 stoweidlem25
44820 stoweidlem42
44837 wallispilem4
44863 stirlinglem10
44878 fourierdlem39
44941 lighneallem3
46354 dignn0flhalflem1
47379 dignn0flhalflem2
47380 itschlc0xyqsol1
47530 |