| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ringinveu | Structured version Visualization version GIF version | ||
| Description: If a ring unit element 𝑋 admits both a left inverse 𝑌 and a right inverse 𝑍, they are equal. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| isdrng4.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdrng4.0 | ⊢ 0 = (0g‘𝑅) |
| isdrng4.1 | ⊢ 1 = (1r‘𝑅) |
| isdrng4.x | ⊢ · = (.r‘𝑅) |
| isdrng4.u | ⊢ 𝑈 = (Unit‘𝑅) |
| isdrng4.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringinveu.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringinveu.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ringinveu.3 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| ringinveu.4 | ⊢ (𝜑 → (𝑌 · 𝑋) = 1 ) |
| ringinveu.5 | ⊢ (𝜑 → (𝑋 · 𝑍) = 1 ) |
| Ref | Expression |
|---|---|
| ringinveu | ⊢ (𝜑 → 𝑍 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringinveu.5 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑍) = 1 ) | |
| 2 | 1 | oveq2d 7362 | . 2 ⊢ (𝜑 → (𝑌 · (𝑋 · 𝑍)) = (𝑌 · 1 )) |
| 3 | ringinveu.4 | . . . 4 ⊢ (𝜑 → (𝑌 · 𝑋) = 1 ) | |
| 4 | 3 | oveq1d 7361 | . . 3 ⊢ (𝜑 → ((𝑌 · 𝑋) · 𝑍) = ( 1 · 𝑍)) |
| 5 | isdrng4.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | isdrng4.x | . . . 4 ⊢ · = (.r‘𝑅) | |
| 7 | isdrng4.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 8 | ringinveu.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | ringinveu.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | ringinveu.3 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 11 | 5, 6, 7, 8, 9, 10 | ringassd 20175 | . . 3 ⊢ (𝜑 → ((𝑌 · 𝑋) · 𝑍) = (𝑌 · (𝑋 · 𝑍))) |
| 12 | isdrng4.1 | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 13 | 5, 6, 12, 7, 10 | ringlidmd 20190 | . . 3 ⊢ (𝜑 → ( 1 · 𝑍) = 𝑍) |
| 14 | 4, 11, 13 | 3eqtr3d 2774 | . 2 ⊢ (𝜑 → (𝑌 · (𝑋 · 𝑍)) = 𝑍) |
| 15 | 5, 6, 12, 7, 8 | ringridmd 20191 | . 2 ⊢ (𝜑 → (𝑌 · 1 ) = 𝑌) |
| 16 | 2, 14, 15 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → 𝑍 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 .rcmulr 17162 0gc0g 17343 1rcur 20099 Ringcrg 20151 Unitcui 20273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mgp 20059 df-ur 20100 df-ring 20153 |
| This theorem is referenced by: isdrng4 33261 drngidl 33398 qsdrngi 33460 |
| Copyright terms: Public domain | W3C validator |