| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ringinveu | Structured version Visualization version GIF version | ||
| Description: If a ring unit element 𝑋 admits both a left inverse 𝑌 and a right inverse 𝑍, they are equal. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| isdrng4.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdrng4.0 | ⊢ 0 = (0g‘𝑅) |
| isdrng4.1 | ⊢ 1 = (1r‘𝑅) |
| isdrng4.x | ⊢ · = (.r‘𝑅) |
| isdrng4.u | ⊢ 𝑈 = (Unit‘𝑅) |
| isdrng4.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringinveu.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringinveu.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ringinveu.3 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| ringinveu.4 | ⊢ (𝜑 → (𝑌 · 𝑋) = 1 ) |
| ringinveu.5 | ⊢ (𝜑 → (𝑋 · 𝑍) = 1 ) |
| Ref | Expression |
|---|---|
| ringinveu | ⊢ (𝜑 → 𝑍 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringinveu.5 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑍) = 1 ) | |
| 2 | 1 | oveq2d 7403 | . 2 ⊢ (𝜑 → (𝑌 · (𝑋 · 𝑍)) = (𝑌 · 1 )) |
| 3 | ringinveu.4 | . . . 4 ⊢ (𝜑 → (𝑌 · 𝑋) = 1 ) | |
| 4 | 3 | oveq1d 7402 | . . 3 ⊢ (𝜑 → ((𝑌 · 𝑋) · 𝑍) = ( 1 · 𝑍)) |
| 5 | isdrng4.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | isdrng4.x | . . . 4 ⊢ · = (.r‘𝑅) | |
| 7 | isdrng4.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 8 | ringinveu.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | ringinveu.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | ringinveu.3 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 11 | 5, 6, 7, 8, 9, 10 | ringassd 20166 | . . 3 ⊢ (𝜑 → ((𝑌 · 𝑋) · 𝑍) = (𝑌 · (𝑋 · 𝑍))) |
| 12 | isdrng4.1 | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 13 | 5, 6, 12, 7, 10 | ringlidmd 20181 | . . 3 ⊢ (𝜑 → ( 1 · 𝑍) = 𝑍) |
| 14 | 4, 11, 13 | 3eqtr3d 2772 | . 2 ⊢ (𝜑 → (𝑌 · (𝑋 · 𝑍)) = 𝑍) |
| 15 | 5, 6, 12, 7, 8 | ringridmd 20182 | . 2 ⊢ (𝜑 → (𝑌 · 1 ) = 𝑌) |
| 16 | 2, 14, 15 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → 𝑍 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 0gc0g 17402 1rcur 20090 Ringcrg 20142 Unitcui 20264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mgp 20050 df-ur 20091 df-ring 20144 |
| This theorem is referenced by: isdrng4 33245 drngidl 33404 qsdrngi 33466 |
| Copyright terms: Public domain | W3C validator |