| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ringinveu | Structured version Visualization version GIF version | ||
| Description: If a ring unit element 𝑋 admits both a left inverse 𝑌 and a right inverse 𝑍, they are equal. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| isdrng4.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdrng4.0 | ⊢ 0 = (0g‘𝑅) |
| isdrng4.1 | ⊢ 1 = (1r‘𝑅) |
| isdrng4.x | ⊢ · = (.r‘𝑅) |
| isdrng4.u | ⊢ 𝑈 = (Unit‘𝑅) |
| isdrng4.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringinveu.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringinveu.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ringinveu.3 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| ringinveu.4 | ⊢ (𝜑 → (𝑌 · 𝑋) = 1 ) |
| ringinveu.5 | ⊢ (𝜑 → (𝑋 · 𝑍) = 1 ) |
| Ref | Expression |
|---|---|
| ringinveu | ⊢ (𝜑 → 𝑍 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringinveu.5 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑍) = 1 ) | |
| 2 | 1 | oveq2d 7426 | . 2 ⊢ (𝜑 → (𝑌 · (𝑋 · 𝑍)) = (𝑌 · 1 )) |
| 3 | ringinveu.4 | . . . 4 ⊢ (𝜑 → (𝑌 · 𝑋) = 1 ) | |
| 4 | 3 | oveq1d 7425 | . . 3 ⊢ (𝜑 → ((𝑌 · 𝑋) · 𝑍) = ( 1 · 𝑍)) |
| 5 | isdrng4.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | isdrng4.x | . . . 4 ⊢ · = (.r‘𝑅) | |
| 7 | isdrng4.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 8 | ringinveu.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | ringinveu.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | ringinveu.3 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 11 | 5, 6, 7, 8, 9, 10 | ringassd 20222 | . . 3 ⊢ (𝜑 → ((𝑌 · 𝑋) · 𝑍) = (𝑌 · (𝑋 · 𝑍))) |
| 12 | isdrng4.1 | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 13 | 5, 6, 12, 7, 10 | ringlidmd 20237 | . . 3 ⊢ (𝜑 → ( 1 · 𝑍) = 𝑍) |
| 14 | 4, 11, 13 | 3eqtr3d 2779 | . 2 ⊢ (𝜑 → (𝑌 · (𝑋 · 𝑍)) = 𝑍) |
| 15 | 5, 6, 12, 7, 8 | ringridmd 20238 | . 2 ⊢ (𝜑 → (𝑌 · 1 ) = 𝑌) |
| 16 | 2, 14, 15 | 3eqtr3d 2779 | 1 ⊢ (𝜑 → 𝑍 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 .rcmulr 17277 0gc0g 17458 1rcur 20146 Ringcrg 20198 Unitcui 20320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mgp 20106 df-ur 20147 df-ring 20200 |
| This theorem is referenced by: isdrng4 33294 drngidl 33453 qsdrngi 33515 |
| Copyright terms: Public domain | W3C validator |