| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringlidmd | Structured version Visualization version GIF version | ||
| Description: The unity element of a ring is a left multiplicative identity. (Contributed by SN, 14-Aug-2024.) |
| Ref | Expression |
|---|---|
| ringlidmd.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringlidmd.t | ⊢ · = (.r‘𝑅) |
| ringlidmd.u | ⊢ 1 = (1r‘𝑅) |
| ringlidmd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringlidmd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringlidmd | ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringlidmd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringlidmd.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ringlidmd.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | ringlidmd.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 5 | ringlidmd.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 6 | 3, 4, 5 | ringlidm 20189 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) |
| 7 | 1, 2, 6 | syl2anc 584 | 1 ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 .rcmulr 17164 1rcur 20101 Ringcrg 20153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mgp 20061 df-ur 20102 df-ring 20155 |
| This theorem is referenced by: rngisom1 20386 rngqiprngimfolem 21229 rng2idl1cntr 21244 psd1 22083 psdpw 22086 erler 33239 rloccring 33244 rloc0g 33245 rloc1r 33246 rlocf1 33247 ringinveu 33267 fracfld 33281 dvdsruassoi 33356 dvdsruasso 33357 dvdsruasso2 33358 elrspunsn 33401 mxidlirredi 33443 unitmulrprm 33500 rprmirredlem 33502 rprmdvdsprod 33506 1arithidom 33509 m1pmeq 33554 mplmulmvr 33590 rtelextdg2lem 33760 zrhcntr 34013 aks5lem2 42300 drnginvmuld 42645 evlsbagval 42684 |
| Copyright terms: Public domain | W3C validator |