![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smatbr | Structured version Visualization version GIF version |
Description: Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
Ref | Expression |
---|---|
smat.s | ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) |
smat.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
smat.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
smat.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) |
smat.l | ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) |
smat.a | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) |
smatbr.i | ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) |
smatbr.j | ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) |
Ref | Expression |
---|---|
smatbr | ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smat.s | . 2 ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) | |
2 | smat.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
3 | smat.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | smat.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) | |
5 | smat.l | . 2 ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) | |
6 | smat.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) | |
7 | fz1ssnn 13565 | . . . . 5 ⊢ (1...𝑀) ⊆ ℕ | |
8 | 7, 4 | sselid 3978 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
9 | fzssnn 13578 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝐾...𝑀) ⊆ ℕ) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝐾...𝑀) ⊆ ℕ) |
11 | smatbr.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) | |
12 | 10, 11 | sseldd 3981 | . 2 ⊢ (𝜑 → 𝐼 ∈ ℕ) |
13 | fz1ssnn 13565 | . . . . 5 ⊢ (1...𝑁) ⊆ ℕ | |
14 | 13, 5 | sselid 3978 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ) |
15 | fzssnn 13578 | . . . 4 ⊢ (𝐿 ∈ ℕ → (𝐿...𝑁) ⊆ ℕ) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝐿...𝑁) ⊆ ℕ) |
17 | smatbr.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) | |
18 | 16, 17 | sseldd 3981 | . 2 ⊢ (𝜑 → 𝐽 ∈ ℕ) |
19 | elfzle1 13537 | . . . . 5 ⊢ (𝐼 ∈ (𝐾...𝑀) → 𝐾 ≤ 𝐼) | |
20 | 11, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ≤ 𝐼) |
21 | 8 | nnred 12258 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
22 | 12 | nnred 12258 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ ℝ) |
23 | 21, 22 | lenltd 11391 | . . . 4 ⊢ (𝜑 → (𝐾 ≤ 𝐼 ↔ ¬ 𝐼 < 𝐾)) |
24 | 20, 23 | mpbid 231 | . . 3 ⊢ (𝜑 → ¬ 𝐼 < 𝐾) |
25 | 24 | iffalsed 4540 | . 2 ⊢ (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = (𝐼 + 1)) |
26 | elfzle1 13537 | . . . . 5 ⊢ (𝐽 ∈ (𝐿...𝑁) → 𝐿 ≤ 𝐽) | |
27 | 17, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ≤ 𝐽) |
28 | 14 | nnred 12258 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
29 | 18 | nnred 12258 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℝ) |
30 | 28, 29 | lenltd 11391 | . . . 4 ⊢ (𝜑 → (𝐿 ≤ 𝐽 ↔ ¬ 𝐽 < 𝐿)) |
31 | 27, 30 | mpbid 231 | . . 3 ⊢ (𝜑 → ¬ 𝐽 < 𝐿) |
32 | 31 | iffalsed 4540 | . 2 ⊢ (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = (𝐽 + 1)) |
33 | 1, 2, 3, 4, 5, 6, 12, 18, 25, 32 | smatlem 33398 | 1 ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 class class class wbr 5148 × cxp 5676 ‘cfv 6548 (class class class)co 7420 ↑m cmap 8845 1c1 11140 + caddc 11142 < clt 11279 ≤ cle 11280 ℕcn 12243 ...cfz 13517 subMat1csmat 33394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-z 12590 df-uz 12854 df-fz 13518 df-smat 33395 |
This theorem is referenced by: submateq 33410 |
Copyright terms: Public domain | W3C validator |