Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatbr Structured version   Visualization version   GIF version

Theorem smatbr 30465
 Description: Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵𝑚 ((1...𝑀) × (1...𝑁))))
smatbr.i (𝜑𝐼 ∈ (𝐾...𝑀))
smatbr.j (𝜑𝐽 ∈ (𝐿...𝑁))
Assertion
Ref Expression
smatbr (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1)))

Proof of Theorem smatbr
StepHypRef Expression
1 smat.s . 2 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
2 smat.m . 2 (𝜑𝑀 ∈ ℕ)
3 smat.n . 2 (𝜑𝑁 ∈ ℕ)
4 smat.k . 2 (𝜑𝐾 ∈ (1...𝑀))
5 smat.l . 2 (𝜑𝐿 ∈ (1...𝑁))
6 smat.a . 2 (𝜑𝐴 ∈ (𝐵𝑚 ((1...𝑀) × (1...𝑁))))
7 fz1ssnn 12689 . . . . 5 (1...𝑀) ⊆ ℕ
87, 4sseldi 3818 . . . 4 (𝜑𝐾 ∈ ℕ)
9 fzssnn 12702 . . . 4 (𝐾 ∈ ℕ → (𝐾...𝑀) ⊆ ℕ)
108, 9syl 17 . . 3 (𝜑 → (𝐾...𝑀) ⊆ ℕ)
11 smatbr.i . . 3 (𝜑𝐼 ∈ (𝐾...𝑀))
1210, 11sseldd 3821 . 2 (𝜑𝐼 ∈ ℕ)
13 fz1ssnn 12689 . . . . 5 (1...𝑁) ⊆ ℕ
1413, 5sseldi 3818 . . . 4 (𝜑𝐿 ∈ ℕ)
15 fzssnn 12702 . . . 4 (𝐿 ∈ ℕ → (𝐿...𝑁) ⊆ ℕ)
1614, 15syl 17 . . 3 (𝜑 → (𝐿...𝑁) ⊆ ℕ)
17 smatbr.j . . 3 (𝜑𝐽 ∈ (𝐿...𝑁))
1816, 17sseldd 3821 . 2 (𝜑𝐽 ∈ ℕ)
19 elfzle1 12661 . . . . 5 (𝐼 ∈ (𝐾...𝑀) → 𝐾𝐼)
2011, 19syl 17 . . . 4 (𝜑𝐾𝐼)
218nnred 11391 . . . . 5 (𝜑𝐾 ∈ ℝ)
2212nnred 11391 . . . . 5 (𝜑𝐼 ∈ ℝ)
2321, 22lenltd 10522 . . . 4 (𝜑 → (𝐾𝐼 ↔ ¬ 𝐼 < 𝐾))
2420, 23mpbid 224 . . 3 (𝜑 → ¬ 𝐼 < 𝐾)
2524iffalsed 4317 . 2 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = (𝐼 + 1))
26 elfzle1 12661 . . . . 5 (𝐽 ∈ (𝐿...𝑁) → 𝐿𝐽)
2717, 26syl 17 . . . 4 (𝜑𝐿𝐽)
2814nnred 11391 . . . . 5 (𝜑𝐿 ∈ ℝ)
2918nnred 11391 . . . . 5 (𝜑𝐽 ∈ ℝ)
3028, 29lenltd 10522 . . . 4 (𝜑 → (𝐿𝐽 ↔ ¬ 𝐽 < 𝐿))
3127, 30mpbid 224 . . 3 (𝜑 → ¬ 𝐽 < 𝐿)
3231iffalsed 4317 . 2 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = (𝐽 + 1))
331, 2, 3, 4, 5, 6, 12, 18, 25, 32smatlem 30461 1 (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1601   ∈ wcel 2106   ⊆ wss 3791   class class class wbr 4886   × cxp 5353  ‘cfv 6135  (class class class)co 6922   ↑𝑚 cmap 8140  1c1 10273   + caddc 10275   < clt 10411   ≤ cle 10412  ℕcn 11374  ...cfz 12643  subMat1csmat 30457 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-z 11729  df-uz 11993  df-fz 12644  df-smat 30458 This theorem is referenced by:  submateq  30473
 Copyright terms: Public domain W3C validator