Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatbr Structured version   Visualization version   GIF version

Theorem smatbr 33768
Description: Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
smatbr.i (𝜑𝐼 ∈ (𝐾...𝑀))
smatbr.j (𝜑𝐽 ∈ (𝐿...𝑁))
Assertion
Ref Expression
smatbr (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1)))

Proof of Theorem smatbr
StepHypRef Expression
1 smat.s . 2 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
2 smat.m . 2 (𝜑𝑀 ∈ ℕ)
3 smat.n . 2 (𝜑𝑁 ∈ ℕ)
4 smat.k . 2 (𝜑𝐾 ∈ (1...𝑀))
5 smat.l . 2 (𝜑𝐿 ∈ (1...𝑁))
6 smat.a . 2 (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
7 fz1ssnn 13458 . . . . 5 (1...𝑀) ⊆ ℕ
87, 4sselid 3933 . . . 4 (𝜑𝐾 ∈ ℕ)
9 fzssnn 13471 . . . 4 (𝐾 ∈ ℕ → (𝐾...𝑀) ⊆ ℕ)
108, 9syl 17 . . 3 (𝜑 → (𝐾...𝑀) ⊆ ℕ)
11 smatbr.i . . 3 (𝜑𝐼 ∈ (𝐾...𝑀))
1210, 11sseldd 3936 . 2 (𝜑𝐼 ∈ ℕ)
13 fz1ssnn 13458 . . . . 5 (1...𝑁) ⊆ ℕ
1413, 5sselid 3933 . . . 4 (𝜑𝐿 ∈ ℕ)
15 fzssnn 13471 . . . 4 (𝐿 ∈ ℕ → (𝐿...𝑁) ⊆ ℕ)
1614, 15syl 17 . . 3 (𝜑 → (𝐿...𝑁) ⊆ ℕ)
17 smatbr.j . . 3 (𝜑𝐽 ∈ (𝐿...𝑁))
1816, 17sseldd 3936 . 2 (𝜑𝐽 ∈ ℕ)
19 elfzle1 13430 . . . . 5 (𝐼 ∈ (𝐾...𝑀) → 𝐾𝐼)
2011, 19syl 17 . . . 4 (𝜑𝐾𝐼)
218nnred 12143 . . . . 5 (𝜑𝐾 ∈ ℝ)
2212nnred 12143 . . . . 5 (𝜑𝐼 ∈ ℝ)
2321, 22lenltd 11262 . . . 4 (𝜑 → (𝐾𝐼 ↔ ¬ 𝐼 < 𝐾))
2420, 23mpbid 232 . . 3 (𝜑 → ¬ 𝐼 < 𝐾)
2524iffalsed 4487 . 2 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = (𝐼 + 1))
26 elfzle1 13430 . . . . 5 (𝐽 ∈ (𝐿...𝑁) → 𝐿𝐽)
2717, 26syl 17 . . . 4 (𝜑𝐿𝐽)
2814nnred 12143 . . . . 5 (𝜑𝐿 ∈ ℝ)
2918nnred 12143 . . . . 5 (𝜑𝐽 ∈ ℝ)
3028, 29lenltd 11262 . . . 4 (𝜑 → (𝐿𝐽 ↔ ¬ 𝐽 < 𝐿))
3127, 30mpbid 232 . . 3 (𝜑 → ¬ 𝐽 < 𝐿)
3231iffalsed 4487 . 2 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = (𝐽 + 1))
331, 2, 3, 4, 5, 6, 12, 18, 25, 32smatlem 33764 1 (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wss 3903   class class class wbr 5092   × cxp 5617  cfv 6482  (class class class)co 7349  m cmap 8753  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cn 12128  ...cfz 13410  subMat1csmat 33760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-z 12472  df-uz 12736  df-fz 13411  df-smat 33761
This theorem is referenced by:  submateq  33776
  Copyright terms: Public domain W3C validator