| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smatbr | Structured version Visualization version GIF version | ||
| Description: Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| Ref | Expression |
|---|---|
| smat.s | ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) |
| smat.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| smat.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| smat.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) |
| smat.l | ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) |
| smat.a | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) |
| smatbr.i | ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) |
| smatbr.j | ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) |
| Ref | Expression |
|---|---|
| smatbr | ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smat.s | . 2 ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) | |
| 2 | smat.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 3 | smat.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | smat.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) | |
| 5 | smat.l | . 2 ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) | |
| 6 | smat.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) | |
| 7 | fz1ssnn 13595 | . . . . 5 ⊢ (1...𝑀) ⊆ ℕ | |
| 8 | 7, 4 | sselid 3981 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 9 | fzssnn 13608 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝐾...𝑀) ⊆ ℕ) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝐾...𝑀) ⊆ ℕ) |
| 11 | smatbr.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) | |
| 12 | 10, 11 | sseldd 3984 | . 2 ⊢ (𝜑 → 𝐼 ∈ ℕ) |
| 13 | fz1ssnn 13595 | . . . . 5 ⊢ (1...𝑁) ⊆ ℕ | |
| 14 | 13, 5 | sselid 3981 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ) |
| 15 | fzssnn 13608 | . . . 4 ⊢ (𝐿 ∈ ℕ → (𝐿...𝑁) ⊆ ℕ) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝐿...𝑁) ⊆ ℕ) |
| 17 | smatbr.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) | |
| 18 | 16, 17 | sseldd 3984 | . 2 ⊢ (𝜑 → 𝐽 ∈ ℕ) |
| 19 | elfzle1 13567 | . . . . 5 ⊢ (𝐼 ∈ (𝐾...𝑀) → 𝐾 ≤ 𝐼) | |
| 20 | 11, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ≤ 𝐼) |
| 21 | 8 | nnred 12281 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 22 | 12 | nnred 12281 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ ℝ) |
| 23 | 21, 22 | lenltd 11407 | . . . 4 ⊢ (𝜑 → (𝐾 ≤ 𝐼 ↔ ¬ 𝐼 < 𝐾)) |
| 24 | 20, 23 | mpbid 232 | . . 3 ⊢ (𝜑 → ¬ 𝐼 < 𝐾) |
| 25 | 24 | iffalsed 4536 | . 2 ⊢ (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = (𝐼 + 1)) |
| 26 | elfzle1 13567 | . . . . 5 ⊢ (𝐽 ∈ (𝐿...𝑁) → 𝐿 ≤ 𝐽) | |
| 27 | 17, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ≤ 𝐽) |
| 28 | 14 | nnred 12281 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 29 | 18 | nnred 12281 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℝ) |
| 30 | 28, 29 | lenltd 11407 | . . . 4 ⊢ (𝜑 → (𝐿 ≤ 𝐽 ↔ ¬ 𝐽 < 𝐿)) |
| 31 | 27, 30 | mpbid 232 | . . 3 ⊢ (𝜑 → ¬ 𝐽 < 𝐿) |
| 32 | 31 | iffalsed 4536 | . 2 ⊢ (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = (𝐽 + 1)) |
| 33 | 1, 2, 3, 4, 5, 6, 12, 18, 25, 32 | smatlem 33796 | 1 ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 class class class wbr 5143 × cxp 5683 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 1c1 11156 + caddc 11158 < clt 11295 ≤ cle 11296 ℕcn 12266 ...cfz 13547 subMat1csmat 33792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-z 12614 df-uz 12879 df-fz 13548 df-smat 33793 |
| This theorem is referenced by: submateq 33808 |
| Copyright terms: Public domain | W3C validator |