| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smatbr | Structured version Visualization version GIF version | ||
| Description: Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| Ref | Expression |
|---|---|
| smat.s | ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) |
| smat.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| smat.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| smat.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) |
| smat.l | ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) |
| smat.a | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) |
| smatbr.i | ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) |
| smatbr.j | ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) |
| Ref | Expression |
|---|---|
| smatbr | ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smat.s | . 2 ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) | |
| 2 | smat.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 3 | smat.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | smat.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) | |
| 5 | smat.l | . 2 ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) | |
| 6 | smat.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) | |
| 7 | fz1ssnn 13572 | . . . . 5 ⊢ (1...𝑀) ⊆ ℕ | |
| 8 | 7, 4 | sselid 3956 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 9 | fzssnn 13585 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝐾...𝑀) ⊆ ℕ) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝐾...𝑀) ⊆ ℕ) |
| 11 | smatbr.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) | |
| 12 | 10, 11 | sseldd 3959 | . 2 ⊢ (𝜑 → 𝐼 ∈ ℕ) |
| 13 | fz1ssnn 13572 | . . . . 5 ⊢ (1...𝑁) ⊆ ℕ | |
| 14 | 13, 5 | sselid 3956 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ) |
| 15 | fzssnn 13585 | . . . 4 ⊢ (𝐿 ∈ ℕ → (𝐿...𝑁) ⊆ ℕ) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝐿...𝑁) ⊆ ℕ) |
| 17 | smatbr.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) | |
| 18 | 16, 17 | sseldd 3959 | . 2 ⊢ (𝜑 → 𝐽 ∈ ℕ) |
| 19 | elfzle1 13544 | . . . . 5 ⊢ (𝐼 ∈ (𝐾...𝑀) → 𝐾 ≤ 𝐼) | |
| 20 | 11, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ≤ 𝐼) |
| 21 | 8 | nnred 12255 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 22 | 12 | nnred 12255 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ ℝ) |
| 23 | 21, 22 | lenltd 11381 | . . . 4 ⊢ (𝜑 → (𝐾 ≤ 𝐼 ↔ ¬ 𝐼 < 𝐾)) |
| 24 | 20, 23 | mpbid 232 | . . 3 ⊢ (𝜑 → ¬ 𝐼 < 𝐾) |
| 25 | 24 | iffalsed 4511 | . 2 ⊢ (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = (𝐼 + 1)) |
| 26 | elfzle1 13544 | . . . . 5 ⊢ (𝐽 ∈ (𝐿...𝑁) → 𝐿 ≤ 𝐽) | |
| 27 | 17, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ≤ 𝐽) |
| 28 | 14 | nnred 12255 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 29 | 18 | nnred 12255 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℝ) |
| 30 | 28, 29 | lenltd 11381 | . . . 4 ⊢ (𝜑 → (𝐿 ≤ 𝐽 ↔ ¬ 𝐽 < 𝐿)) |
| 31 | 27, 30 | mpbid 232 | . . 3 ⊢ (𝜑 → ¬ 𝐽 < 𝐿) |
| 32 | 31 | iffalsed 4511 | . 2 ⊢ (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = (𝐽 + 1)) |
| 33 | 1, 2, 3, 4, 5, 6, 12, 18, 25, 32 | smatlem 33828 | 1 ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 class class class wbr 5119 × cxp 5652 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 1c1 11130 + caddc 11132 < clt 11269 ≤ cle 11270 ℕcn 12240 ...cfz 13524 subMat1csmat 33824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-z 12589 df-uz 12853 df-fz 13525 df-smat 33825 |
| This theorem is referenced by: submateq 33840 |
| Copyright terms: Public domain | W3C validator |