| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smatbr | Structured version Visualization version GIF version | ||
| Description: Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| Ref | Expression |
|---|---|
| smat.s | ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) |
| smat.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| smat.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| smat.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) |
| smat.l | ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) |
| smat.a | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) |
| smatbr.i | ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) |
| smatbr.j | ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) |
| Ref | Expression |
|---|---|
| smatbr | ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smat.s | . 2 ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) | |
| 2 | smat.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 3 | smat.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | smat.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) | |
| 5 | smat.l | . 2 ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) | |
| 6 | smat.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) | |
| 7 | fz1ssnn 13455 | . . . . 5 ⊢ (1...𝑀) ⊆ ℕ | |
| 8 | 7, 4 | sselid 3927 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 9 | fzssnn 13468 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝐾...𝑀) ⊆ ℕ) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝐾...𝑀) ⊆ ℕ) |
| 11 | smatbr.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) | |
| 12 | 10, 11 | sseldd 3930 | . 2 ⊢ (𝜑 → 𝐼 ∈ ℕ) |
| 13 | fz1ssnn 13455 | . . . . 5 ⊢ (1...𝑁) ⊆ ℕ | |
| 14 | 13, 5 | sselid 3927 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ) |
| 15 | fzssnn 13468 | . . . 4 ⊢ (𝐿 ∈ ℕ → (𝐿...𝑁) ⊆ ℕ) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝐿...𝑁) ⊆ ℕ) |
| 17 | smatbr.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) | |
| 18 | 16, 17 | sseldd 3930 | . 2 ⊢ (𝜑 → 𝐽 ∈ ℕ) |
| 19 | elfzle1 13427 | . . . . 5 ⊢ (𝐼 ∈ (𝐾...𝑀) → 𝐾 ≤ 𝐼) | |
| 20 | 11, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ≤ 𝐼) |
| 21 | 8 | nnred 12140 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 22 | 12 | nnred 12140 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ ℝ) |
| 23 | 21, 22 | lenltd 11259 | . . . 4 ⊢ (𝜑 → (𝐾 ≤ 𝐼 ↔ ¬ 𝐼 < 𝐾)) |
| 24 | 20, 23 | mpbid 232 | . . 3 ⊢ (𝜑 → ¬ 𝐼 < 𝐾) |
| 25 | 24 | iffalsed 4483 | . 2 ⊢ (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = (𝐼 + 1)) |
| 26 | elfzle1 13427 | . . . . 5 ⊢ (𝐽 ∈ (𝐿...𝑁) → 𝐿 ≤ 𝐽) | |
| 27 | 17, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ≤ 𝐽) |
| 28 | 14 | nnred 12140 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 29 | 18 | nnred 12140 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℝ) |
| 30 | 28, 29 | lenltd 11259 | . . . 4 ⊢ (𝜑 → (𝐿 ≤ 𝐽 ↔ ¬ 𝐽 < 𝐿)) |
| 31 | 27, 30 | mpbid 232 | . . 3 ⊢ (𝜑 → ¬ 𝐽 < 𝐿) |
| 32 | 31 | iffalsed 4483 | . 2 ⊢ (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = (𝐽 + 1)) |
| 33 | 1, 2, 3, 4, 5, 6, 12, 18, 25, 32 | smatlem 33810 | 1 ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5089 × cxp 5612 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 1c1 11007 + caddc 11009 < clt 11146 ≤ cle 11147 ℕcn 12125 ...cfz 13407 subMat1csmat 33806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-z 12469 df-uz 12733 df-fz 13408 df-smat 33807 |
| This theorem is referenced by: submateq 33822 |
| Copyright terms: Public domain | W3C validator |