Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatbr Structured version   Visualization version   GIF version

Theorem smatbr 33814
Description: Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
smatbr.i (𝜑𝐼 ∈ (𝐾...𝑀))
smatbr.j (𝜑𝐽 ∈ (𝐿...𝑁))
Assertion
Ref Expression
smatbr (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1)))

Proof of Theorem smatbr
StepHypRef Expression
1 smat.s . 2 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
2 smat.m . 2 (𝜑𝑀 ∈ ℕ)
3 smat.n . 2 (𝜑𝑁 ∈ ℕ)
4 smat.k . 2 (𝜑𝐾 ∈ (1...𝑀))
5 smat.l . 2 (𝜑𝐿 ∈ (1...𝑁))
6 smat.a . 2 (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
7 fz1ssnn 13455 . . . . 5 (1...𝑀) ⊆ ℕ
87, 4sselid 3927 . . . 4 (𝜑𝐾 ∈ ℕ)
9 fzssnn 13468 . . . 4 (𝐾 ∈ ℕ → (𝐾...𝑀) ⊆ ℕ)
108, 9syl 17 . . 3 (𝜑 → (𝐾...𝑀) ⊆ ℕ)
11 smatbr.i . . 3 (𝜑𝐼 ∈ (𝐾...𝑀))
1210, 11sseldd 3930 . 2 (𝜑𝐼 ∈ ℕ)
13 fz1ssnn 13455 . . . . 5 (1...𝑁) ⊆ ℕ
1413, 5sselid 3927 . . . 4 (𝜑𝐿 ∈ ℕ)
15 fzssnn 13468 . . . 4 (𝐿 ∈ ℕ → (𝐿...𝑁) ⊆ ℕ)
1614, 15syl 17 . . 3 (𝜑 → (𝐿...𝑁) ⊆ ℕ)
17 smatbr.j . . 3 (𝜑𝐽 ∈ (𝐿...𝑁))
1816, 17sseldd 3930 . 2 (𝜑𝐽 ∈ ℕ)
19 elfzle1 13427 . . . . 5 (𝐼 ∈ (𝐾...𝑀) → 𝐾𝐼)
2011, 19syl 17 . . . 4 (𝜑𝐾𝐼)
218nnred 12140 . . . . 5 (𝜑𝐾 ∈ ℝ)
2212nnred 12140 . . . . 5 (𝜑𝐼 ∈ ℝ)
2321, 22lenltd 11259 . . . 4 (𝜑 → (𝐾𝐼 ↔ ¬ 𝐼 < 𝐾))
2420, 23mpbid 232 . . 3 (𝜑 → ¬ 𝐼 < 𝐾)
2524iffalsed 4483 . 2 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = (𝐼 + 1))
26 elfzle1 13427 . . . . 5 (𝐽 ∈ (𝐿...𝑁) → 𝐿𝐽)
2717, 26syl 17 . . . 4 (𝜑𝐿𝐽)
2814nnred 12140 . . . . 5 (𝜑𝐿 ∈ ℝ)
2918nnred 12140 . . . . 5 (𝜑𝐽 ∈ ℝ)
3028, 29lenltd 11259 . . . 4 (𝜑 → (𝐿𝐽 ↔ ¬ 𝐽 < 𝐿))
3127, 30mpbid 232 . . 3 (𝜑 → ¬ 𝐽 < 𝐿)
3231iffalsed 4483 . 2 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = (𝐽 + 1))
331, 2, 3, 4, 5, 6, 12, 18, 25, 32smatlem 33810 1 (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  wss 3897   class class class wbr 5089   × cxp 5612  cfv 6481  (class class class)co 7346  m cmap 8750  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cn 12125  ...cfz 13407  subMat1csmat 33806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-z 12469  df-uz 12733  df-fz 13408  df-smat 33807
This theorem is referenced by:  submateq  33822
  Copyright terms: Public domain W3C validator