Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatcl Structured version   Visualization version   GIF version

Theorem smatcl 32440
Description: Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smatcl.a 𝐴 = ((1...𝑁) Mat 𝑅)
smatcl.b 𝐵 = (Base‘𝐴)
smatcl.c 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
smatcl.s 𝑆 = (𝐾(subMat1‘𝑀)𝐿)
smatcl.n (𝜑𝑁 ∈ ℕ)
smatcl.k (𝜑𝐾 ∈ (1...𝑁))
smatcl.l (𝜑𝐿 ∈ (1...𝑁))
smatcl.m (𝜑𝑀𝐵)
Assertion
Ref Expression
smatcl (𝜑𝑆𝐶)

Proof of Theorem smatcl
StepHypRef Expression
1 smatcl.s . . . 4 𝑆 = (𝐾(subMat1‘𝑀)𝐿)
2 smatcl.n . . . 4 (𝜑𝑁 ∈ ℕ)
3 smatcl.k . . . 4 (𝜑𝐾 ∈ (1...𝑁))
4 smatcl.l . . . 4 (𝜑𝐿 ∈ (1...𝑁))
5 smatcl.m . . . . 5 (𝜑𝑀𝐵)
6 smatcl.a . . . . . 6 𝐴 = ((1...𝑁) Mat 𝑅)
7 eqid 2733 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
8 smatcl.b . . . . . 6 𝐵 = (Base‘𝐴)
96, 7, 8matbas2i 21787 . . . . 5 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
105, 9syl 17 . . . 4 (𝜑𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
111, 2, 2, 3, 4, 10smatrcl 32434 . . 3 (𝜑𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
12 fzfi 13883 . . . . 5 (1...(𝑁 − 1)) ∈ Fin
136, 8matrcl 21775 . . . . . . 7 (𝑀𝐵 → ((1...𝑁) ∈ Fin ∧ 𝑅 ∈ V))
1413simprd 497 . . . . . 6 (𝑀𝐵𝑅 ∈ V)
155, 14syl 17 . . . . 5 (𝜑𝑅 ∈ V)
16 eqid 2733 . . . . . 6 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
1716, 7matbas2 21786 . . . . 5 (((1...(𝑁 − 1)) ∈ Fin ∧ 𝑅 ∈ V) → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
1812, 15, 17sylancr 588 . . . 4 (𝜑 → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
1918eleq2d 2820 . . 3 (𝜑 → (𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))))
2011, 19mpbid 231 . 2 (𝜑𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
21 smatcl.c . 2 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
2220, 21eleqtrrdi 2845 1 (𝜑𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3444   × cxp 5632  cfv 6497  (class class class)co 7358  m cmap 8768  Fincfn 8886  1c1 11057  cmin 11390  cn 12158  ...cfz 13430  Basecbs 17088   Mat cmat 21770  subMat1csmat 32431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-ot 4596  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-supp 8094  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-map 8770  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-fsupp 9309  df-sup 9383  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-dec 12624  df-uz 12769  df-fz 13431  df-struct 17024  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-mulr 17152  df-sca 17154  df-vsca 17155  df-ip 17156  df-tset 17157  df-ple 17158  df-ds 17160  df-hom 17162  df-cco 17163  df-0g 17328  df-prds 17334  df-pws 17336  df-sra 20649  df-rgmod 20650  df-dsmm 21154  df-frlm 21169  df-mat 21771  df-smat 32432
This theorem is referenced by:  submat1n  32443  submateq  32447  madjusmdetlem3  32467  mdetlap  32470
  Copyright terms: Public domain W3C validator