| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smatcl | Structured version Visualization version GIF version | ||
| Description: Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| Ref | Expression |
|---|---|
| smatcl.a | ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
| smatcl.b | ⊢ 𝐵 = (Base‘𝐴) |
| smatcl.c | ⊢ 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅)) |
| smatcl.s | ⊢ 𝑆 = (𝐾(subMat1‘𝑀)𝐿) |
| smatcl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| smatcl.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) |
| smatcl.l | ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) |
| smatcl.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| smatcl | ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smatcl.s | . . . 4 ⊢ 𝑆 = (𝐾(subMat1‘𝑀)𝐿) | |
| 2 | smatcl.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | smatcl.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) | |
| 4 | smatcl.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) | |
| 5 | smatcl.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 6 | smatcl.a | . . . . . 6 ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | |
| 7 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | smatcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 9 | 6, 7, 8 | matbas2i 22335 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 10 | 5, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 11 | 1, 2, 2, 3, 4, 10 | smatrcl 33804 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
| 12 | fzfi 13876 | . . . . 5 ⊢ (1...(𝑁 − 1)) ∈ Fin | |
| 13 | 6, 8 | matrcl 22325 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → ((1...𝑁) ∈ Fin ∧ 𝑅 ∈ V)) |
| 14 | 13 | simprd 495 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → 𝑅 ∈ V) |
| 15 | 5, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 16 | eqid 2731 | . . . . . 6 ⊢ ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅) | |
| 17 | 16, 7 | matbas2 22334 | . . . . 5 ⊢ (((1...(𝑁 − 1)) ∈ Fin ∧ 𝑅 ∈ V) → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
| 18 | 12, 15, 17 | sylancr 587 | . . . 4 ⊢ (𝜑 → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
| 19 | 18 | eleq2d 2817 | . . 3 ⊢ (𝜑 → (𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))) |
| 20 | 11, 19 | mpbid 232 | . 2 ⊢ (𝜑 → 𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
| 21 | smatcl.c | . 2 ⊢ 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅)) | |
| 22 | 20, 21 | eleqtrrdi 2842 | 1 ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 × cxp 5614 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 1c1 11004 − cmin 11341 ℕcn 12122 ...cfz 13404 Basecbs 17117 Mat cmat 22320 subMat1csmat 33801 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-hom 17182 df-cco 17183 df-0g 17342 df-prds 17348 df-pws 17350 df-sra 21105 df-rgmod 21106 df-dsmm 21667 df-frlm 21682 df-mat 22321 df-smat 33802 |
| This theorem is referenced by: submat1n 33813 submateq 33817 madjusmdetlem3 33837 mdetlap 33840 |
| Copyright terms: Public domain | W3C validator |