Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatcl Structured version   Visualization version   GIF version

Theorem smatcl 33312
Description: Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smatcl.a 𝐴 = ((1...𝑁) Mat 𝑅)
smatcl.b 𝐵 = (Base‘𝐴)
smatcl.c 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
smatcl.s 𝑆 = (𝐾(subMat1‘𝑀)𝐿)
smatcl.n (𝜑𝑁 ∈ ℕ)
smatcl.k (𝜑𝐾 ∈ (1...𝑁))
smatcl.l (𝜑𝐿 ∈ (1...𝑁))
smatcl.m (𝜑𝑀𝐵)
Assertion
Ref Expression
smatcl (𝜑𝑆𝐶)

Proof of Theorem smatcl
StepHypRef Expression
1 smatcl.s . . . 4 𝑆 = (𝐾(subMat1‘𝑀)𝐿)
2 smatcl.n . . . 4 (𝜑𝑁 ∈ ℕ)
3 smatcl.k . . . 4 (𝜑𝐾 ∈ (1...𝑁))
4 smatcl.l . . . 4 (𝜑𝐿 ∈ (1...𝑁))
5 smatcl.m . . . . 5 (𝜑𝑀𝐵)
6 smatcl.a . . . . . 6 𝐴 = ((1...𝑁) Mat 𝑅)
7 eqid 2726 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
8 smatcl.b . . . . . 6 𝐵 = (Base‘𝐴)
96, 7, 8matbas2i 22275 . . . . 5 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
105, 9syl 17 . . . 4 (𝜑𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
111, 2, 2, 3, 4, 10smatrcl 33306 . . 3 (𝜑𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
12 fzfi 13940 . . . . 5 (1...(𝑁 − 1)) ∈ Fin
136, 8matrcl 22263 . . . . . . 7 (𝑀𝐵 → ((1...𝑁) ∈ Fin ∧ 𝑅 ∈ V))
1413simprd 495 . . . . . 6 (𝑀𝐵𝑅 ∈ V)
155, 14syl 17 . . . . 5 (𝜑𝑅 ∈ V)
16 eqid 2726 . . . . . 6 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
1716, 7matbas2 22274 . . . . 5 (((1...(𝑁 − 1)) ∈ Fin ∧ 𝑅 ∈ V) → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
1812, 15, 17sylancr 586 . . . 4 (𝜑 → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
1918eleq2d 2813 . . 3 (𝜑 → (𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))))
2011, 19mpbid 231 . 2 (𝜑𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
21 smatcl.c . 2 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
2220, 21eleqtrrdi 2838 1 (𝜑𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3468   × cxp 5667  cfv 6536  (class class class)co 7404  m cmap 8819  Fincfn 8938  1c1 11110  cmin 11445  cn 12213  ...cfz 13487  Basecbs 17151   Mat cmat 22258  subMat1csmat 33303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8144  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-sup 9436  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-dec 12679  df-uz 12824  df-fz 13488  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-hom 17228  df-cco 17229  df-0g 17394  df-prds 17400  df-pws 17402  df-sra 21019  df-rgmod 21020  df-dsmm 21623  df-frlm 21638  df-mat 22259  df-smat 33304
This theorem is referenced by:  submat1n  33315  submateq  33319  madjusmdetlem3  33339  mdetlap  33342
  Copyright terms: Public domain W3C validator