![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smatcl | Structured version Visualization version GIF version |
Description: Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.) |
Ref | Expression |
---|---|
smatcl.a | ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
smatcl.b | ⊢ 𝐵 = (Base‘𝐴) |
smatcl.c | ⊢ 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅)) |
smatcl.s | ⊢ 𝑆 = (𝐾(subMat1‘𝑀)𝐿) |
smatcl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
smatcl.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) |
smatcl.l | ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) |
smatcl.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
Ref | Expression |
---|---|
smatcl | ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smatcl.s | . . . 4 ⊢ 𝑆 = (𝐾(subMat1‘𝑀)𝐿) | |
2 | smatcl.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | smatcl.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) | |
4 | smatcl.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) | |
5 | smatcl.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
6 | smatcl.a | . . . . . 6 ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | |
7 | eqid 2732 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | smatcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
9 | 6, 7, 8 | matbas2i 21915 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
10 | 5, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
11 | 1, 2, 2, 3, 4, 10 | smatrcl 32764 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
12 | fzfi 13933 | . . . . 5 ⊢ (1...(𝑁 − 1)) ∈ Fin | |
13 | 6, 8 | matrcl 21903 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → ((1...𝑁) ∈ Fin ∧ 𝑅 ∈ V)) |
14 | 13 | simprd 496 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → 𝑅 ∈ V) |
15 | 5, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
16 | eqid 2732 | . . . . . 6 ⊢ ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅) | |
17 | 16, 7 | matbas2 21914 | . . . . 5 ⊢ (((1...(𝑁 − 1)) ∈ Fin ∧ 𝑅 ∈ V) → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
18 | 12, 15, 17 | sylancr 587 | . . . 4 ⊢ (𝜑 → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
19 | 18 | eleq2d 2819 | . . 3 ⊢ (𝜑 → (𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))) |
20 | 11, 19 | mpbid 231 | . 2 ⊢ (𝜑 → 𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
21 | smatcl.c | . 2 ⊢ 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅)) | |
22 | 20, 21 | eleqtrrdi 2844 | 1 ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 × cxp 5673 ‘cfv 6540 (class class class)co 7405 ↑m cmap 8816 Fincfn 8935 1c1 11107 − cmin 11440 ℕcn 12208 ...cfz 13480 Basecbs 17140 Mat cmat 21898 subMat1csmat 32761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-prds 17389 df-pws 17391 df-sra 20777 df-rgmod 20778 df-dsmm 21278 df-frlm 21293 df-mat 21899 df-smat 32762 |
This theorem is referenced by: submat1n 32773 submateq 32777 madjusmdetlem3 32797 mdetlap 32800 |
Copyright terms: Public domain | W3C validator |