| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smatcl | Structured version Visualization version GIF version | ||
| Description: Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| Ref | Expression |
|---|---|
| smatcl.a | ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
| smatcl.b | ⊢ 𝐵 = (Base‘𝐴) |
| smatcl.c | ⊢ 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅)) |
| smatcl.s | ⊢ 𝑆 = (𝐾(subMat1‘𝑀)𝐿) |
| smatcl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| smatcl.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) |
| smatcl.l | ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) |
| smatcl.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| smatcl | ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smatcl.s | . . . 4 ⊢ 𝑆 = (𝐾(subMat1‘𝑀)𝐿) | |
| 2 | smatcl.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | smatcl.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) | |
| 4 | smatcl.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) | |
| 5 | smatcl.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 6 | smatcl.a | . . . . . 6 ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | |
| 7 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | smatcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 9 | 6, 7, 8 | matbas2i 22338 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 10 | 5, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 11 | 1, 2, 2, 3, 4, 10 | smatrcl 33830 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
| 12 | fzfi 13881 | . . . . 5 ⊢ (1...(𝑁 − 1)) ∈ Fin | |
| 13 | 6, 8 | matrcl 22328 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → ((1...𝑁) ∈ Fin ∧ 𝑅 ∈ V)) |
| 14 | 13 | simprd 495 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → 𝑅 ∈ V) |
| 15 | 5, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 16 | eqid 2733 | . . . . . 6 ⊢ ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅) | |
| 17 | 16, 7 | matbas2 22337 | . . . . 5 ⊢ (((1...(𝑁 − 1)) ∈ Fin ∧ 𝑅 ∈ V) → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
| 18 | 12, 15, 17 | sylancr 587 | . . . 4 ⊢ (𝜑 → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
| 19 | 18 | eleq2d 2819 | . . 3 ⊢ (𝜑 → (𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))) |
| 20 | 11, 19 | mpbid 232 | . 2 ⊢ (𝜑 → 𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
| 21 | smatcl.c | . 2 ⊢ 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅)) | |
| 22 | 20, 21 | eleqtrrdi 2844 | 1 ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 × cxp 5617 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 Fincfn 8875 1c1 11014 − cmin 11351 ℕcn 12132 ...cfz 13409 Basecbs 17122 Mat cmat 22323 subMat1csmat 33827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-0g 17347 df-prds 17353 df-pws 17355 df-sra 21109 df-rgmod 21110 df-dsmm 21671 df-frlm 21686 df-mat 22324 df-smat 33828 |
| This theorem is referenced by: submat1n 33839 submateq 33843 madjusmdetlem3 33863 mdetlap 33866 |
| Copyright terms: Public domain | W3C validator |