![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smatcl | Structured version Visualization version GIF version |
Description: Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.) |
Ref | Expression |
---|---|
smatcl.a | ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
smatcl.b | ⊢ 𝐵 = (Base‘𝐴) |
smatcl.c | ⊢ 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅)) |
smatcl.s | ⊢ 𝑆 = (𝐾(subMat1‘𝑀)𝐿) |
smatcl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
smatcl.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) |
smatcl.l | ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) |
smatcl.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
Ref | Expression |
---|---|
smatcl | ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smatcl.s | . . . 4 ⊢ 𝑆 = (𝐾(subMat1‘𝑀)𝐿) | |
2 | smatcl.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | smatcl.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) | |
4 | smatcl.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) | |
5 | smatcl.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
6 | smatcl.a | . . . . . 6 ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | |
7 | eqid 2725 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | smatcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
9 | 6, 7, 8 | matbas2i 22407 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
10 | 5, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
11 | 1, 2, 2, 3, 4, 10 | smatrcl 33567 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
12 | fzfi 13987 | . . . . 5 ⊢ (1...(𝑁 − 1)) ∈ Fin | |
13 | 6, 8 | matrcl 22395 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → ((1...𝑁) ∈ Fin ∧ 𝑅 ∈ V)) |
14 | 13 | simprd 494 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → 𝑅 ∈ V) |
15 | 5, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
16 | eqid 2725 | . . . . . 6 ⊢ ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅) | |
17 | 16, 7 | matbas2 22406 | . . . . 5 ⊢ (((1...(𝑁 − 1)) ∈ Fin ∧ 𝑅 ∈ V) → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
18 | 12, 15, 17 | sylancr 585 | . . . 4 ⊢ (𝜑 → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
19 | 18 | eleq2d 2811 | . . 3 ⊢ (𝜑 → (𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))) |
20 | 11, 19 | mpbid 231 | . 2 ⊢ (𝜑 → 𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
21 | smatcl.c | . 2 ⊢ 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅)) | |
22 | 20, 21 | eleqtrrdi 2836 | 1 ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3461 × cxp 5679 ‘cfv 6553 (class class class)co 7423 ↑m cmap 8854 Fincfn 8973 1c1 11155 − cmin 11490 ℕcn 12259 ...cfz 13533 Basecbs 17208 Mat cmat 22390 subMat1csmat 33564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-ot 4641 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-om 7876 df-1st 8002 df-2nd 8003 df-supp 8174 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-map 8856 df-ixp 8926 df-en 8974 df-dom 8975 df-sdom 8976 df-fin 8977 df-fsupp 9402 df-sup 9481 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-nn 12260 df-2 12322 df-3 12323 df-4 12324 df-5 12325 df-6 12326 df-7 12327 df-8 12328 df-9 12329 df-n0 12520 df-z 12606 df-dec 12725 df-uz 12870 df-fz 13534 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-hom 17285 df-cco 17286 df-0g 17451 df-prds 17457 df-pws 17459 df-sra 21098 df-rgmod 21099 df-dsmm 21722 df-frlm 21737 df-mat 22391 df-smat 33565 |
This theorem is referenced by: submat1n 33576 submateq 33580 madjusmdetlem3 33600 mdetlap 33603 |
Copyright terms: Public domain | W3C validator |