Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smatcl | Structured version Visualization version GIF version |
Description: Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.) |
Ref | Expression |
---|---|
smatcl.a | ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
smatcl.b | ⊢ 𝐵 = (Base‘𝐴) |
smatcl.c | ⊢ 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅)) |
smatcl.s | ⊢ 𝑆 = (𝐾(subMat1‘𝑀)𝐿) |
smatcl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
smatcl.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) |
smatcl.l | ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) |
smatcl.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
Ref | Expression |
---|---|
smatcl | ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smatcl.s | . . . 4 ⊢ 𝑆 = (𝐾(subMat1‘𝑀)𝐿) | |
2 | smatcl.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | smatcl.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) | |
4 | smatcl.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) | |
5 | smatcl.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
6 | smatcl.a | . . . . . 6 ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | |
7 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | smatcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
9 | 6, 7, 8 | matbas2i 21479 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
10 | 5, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
11 | 1, 2, 2, 3, 4, 10 | smatrcl 31648 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
12 | fzfi 13620 | . . . . 5 ⊢ (1...(𝑁 − 1)) ∈ Fin | |
13 | 6, 8 | matrcl 21469 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → ((1...𝑁) ∈ Fin ∧ 𝑅 ∈ V)) |
14 | 13 | simprd 495 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → 𝑅 ∈ V) |
15 | 5, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
16 | eqid 2738 | . . . . . 6 ⊢ ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅) | |
17 | 16, 7 | matbas2 21478 | . . . . 5 ⊢ (((1...(𝑁 − 1)) ∈ Fin ∧ 𝑅 ∈ V) → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
18 | 12, 15, 17 | sylancr 586 | . . . 4 ⊢ (𝜑 → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
19 | 18 | eleq2d 2824 | . . 3 ⊢ (𝜑 → (𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))) |
20 | 11, 19 | mpbid 231 | . 2 ⊢ (𝜑 → 𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
21 | smatcl.c | . 2 ⊢ 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅)) | |
22 | 20, 21 | eleqtrrdi 2850 | 1 ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 1c1 10803 − cmin 11135 ℕcn 11903 ...cfz 13168 Basecbs 16840 Mat cmat 21464 subMat1csmat 31645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 df-mat 21465 df-smat 31646 |
This theorem is referenced by: submat1n 31657 submateq 31661 madjusmdetlem3 31681 mdetlap 31684 |
Copyright terms: Public domain | W3C validator |