Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatcl Structured version   Visualization version   GIF version

Theorem smatcl 32383
Description: Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smatcl.a 𝐴 = ((1...𝑁) Mat 𝑅)
smatcl.b 𝐵 = (Base‘𝐴)
smatcl.c 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
smatcl.s 𝑆 = (𝐾(subMat1‘𝑀)𝐿)
smatcl.n (𝜑𝑁 ∈ ℕ)
smatcl.k (𝜑𝐾 ∈ (1...𝑁))
smatcl.l (𝜑𝐿 ∈ (1...𝑁))
smatcl.m (𝜑𝑀𝐵)
Assertion
Ref Expression
smatcl (𝜑𝑆𝐶)

Proof of Theorem smatcl
StepHypRef Expression
1 smatcl.s . . . 4 𝑆 = (𝐾(subMat1‘𝑀)𝐿)
2 smatcl.n . . . 4 (𝜑𝑁 ∈ ℕ)
3 smatcl.k . . . 4 (𝜑𝐾 ∈ (1...𝑁))
4 smatcl.l . . . 4 (𝜑𝐿 ∈ (1...𝑁))
5 smatcl.m . . . . 5 (𝜑𝑀𝐵)
6 smatcl.a . . . . . 6 𝐴 = ((1...𝑁) Mat 𝑅)
7 eqid 2736 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
8 smatcl.b . . . . . 6 𝐵 = (Base‘𝐴)
96, 7, 8matbas2i 21771 . . . . 5 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
105, 9syl 17 . . . 4 (𝜑𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
111, 2, 2, 3, 4, 10smatrcl 32377 . . 3 (𝜑𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
12 fzfi 13877 . . . . 5 (1...(𝑁 − 1)) ∈ Fin
136, 8matrcl 21759 . . . . . . 7 (𝑀𝐵 → ((1...𝑁) ∈ Fin ∧ 𝑅 ∈ V))
1413simprd 496 . . . . . 6 (𝑀𝐵𝑅 ∈ V)
155, 14syl 17 . . . . 5 (𝜑𝑅 ∈ V)
16 eqid 2736 . . . . . 6 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
1716, 7matbas2 21770 . . . . 5 (((1...(𝑁 − 1)) ∈ Fin ∧ 𝑅 ∈ V) → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
1812, 15, 17sylancr 587 . . . 4 (𝜑 → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
1918eleq2d 2823 . . 3 (𝜑 → (𝑆 ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))))
2011, 19mpbid 231 . 2 (𝜑𝑆 ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
21 smatcl.c . 2 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
2220, 21eleqtrrdi 2849 1 (𝜑𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3445   × cxp 5631  cfv 6496  (class class class)co 7357  m cmap 8765  Fincfn 8883  1c1 11052  cmin 11385  cn 12153  ...cfz 13424  Basecbs 17083   Mat cmat 21754  subMat1csmat 32374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-pws 17331  df-sra 20633  df-rgmod 20634  df-dsmm 21138  df-frlm 21153  df-mat 21755  df-smat 32375
This theorem is referenced by:  submat1n  32386  submateq  32390  madjusmdetlem3  32410  mdetlap  32413
  Copyright terms: Public domain W3C validator