| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smatbl | Structured version Visualization version GIF version | ||
| Description: Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| Ref | Expression |
|---|---|
| smat.s | ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) |
| smat.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| smat.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| smat.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) |
| smat.l | ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) |
| smat.a | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) |
| smatbl.i | ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) |
| smatbl.j | ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) |
| Ref | Expression |
|---|---|
| smatbl | ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smat.s | . 2 ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) | |
| 2 | smat.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 3 | smat.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | smat.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) | |
| 5 | smat.l | . 2 ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) | |
| 6 | smat.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) | |
| 7 | fzossnn 13608 | . . 3 ⊢ (1..^𝐾) ⊆ ℕ | |
| 8 | smatbl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) | |
| 9 | 7, 8 | sselid 3932 | . 2 ⊢ (𝜑 → 𝐼 ∈ ℕ) |
| 10 | fz1ssnn 13452 | . . . . 5 ⊢ (1...𝑁) ⊆ ℕ | |
| 11 | 10, 5 | sselid 3932 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ) |
| 12 | fzssnn 13465 | . . . 4 ⊢ (𝐿 ∈ ℕ → (𝐿...𝑁) ⊆ ℕ) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝐿...𝑁) ⊆ ℕ) |
| 14 | smatbl.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) | |
| 15 | 13, 14 | sseldd 3935 | . 2 ⊢ (𝜑 → 𝐽 ∈ ℕ) |
| 16 | elfzolt2 13565 | . . . 4 ⊢ (𝐼 ∈ (1..^𝐾) → 𝐼 < 𝐾) | |
| 17 | 8, 16 | syl 17 | . . 3 ⊢ (𝜑 → 𝐼 < 𝐾) |
| 18 | 17 | iftrued 4483 | . 2 ⊢ (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝐼) |
| 19 | elfzle1 13424 | . . . . 5 ⊢ (𝐽 ∈ (𝐿...𝑁) → 𝐿 ≤ 𝐽) | |
| 20 | 14, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ≤ 𝐽) |
| 21 | 11 | nnred 12137 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 22 | 15 | nnred 12137 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℝ) |
| 23 | 21, 22 | lenltd 11256 | . . . 4 ⊢ (𝜑 → (𝐿 ≤ 𝐽 ↔ ¬ 𝐽 < 𝐿)) |
| 24 | 20, 23 | mpbid 232 | . . 3 ⊢ (𝜑 → ¬ 𝐽 < 𝐿) |
| 25 | 24 | iffalsed 4486 | . 2 ⊢ (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = (𝐽 + 1)) |
| 26 | 1, 2, 3, 4, 5, 6, 9, 15, 18, 25 | smatlem 33805 | 1 ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 × cxp 5614 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 1c1 11004 + caddc 11006 < clt 11143 ≤ cle 11144 ℕcn 12122 ...cfz 13404 ..^cfzo 13551 subMat1csmat 33801 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-smat 33802 |
| This theorem is referenced by: submateq 33817 |
| Copyright terms: Public domain | W3C validator |