Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatbl Structured version   Visualization version   GIF version

Theorem smatbl 33834
Description: Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
smatbl.i (𝜑𝐼 ∈ (1..^𝐾))
smatbl.j (𝜑𝐽 ∈ (𝐿...𝑁))
Assertion
Ref Expression
smatbl (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1)))

Proof of Theorem smatbl
StepHypRef Expression
1 smat.s . 2 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
2 smat.m . 2 (𝜑𝑀 ∈ ℕ)
3 smat.n . 2 (𝜑𝑁 ∈ ℕ)
4 smat.k . 2 (𝜑𝐾 ∈ (1...𝑀))
5 smat.l . 2 (𝜑𝐿 ∈ (1...𝑁))
6 smat.a . 2 (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
7 fzossnn 13613 . . 3 (1..^𝐾) ⊆ ℕ
8 smatbl.i . . 3 (𝜑𝐼 ∈ (1..^𝐾))
97, 8sselid 3928 . 2 (𝜑𝐼 ∈ ℕ)
10 fz1ssnn 13457 . . . . 5 (1...𝑁) ⊆ ℕ
1110, 5sselid 3928 . . . 4 (𝜑𝐿 ∈ ℕ)
12 fzssnn 13470 . . . 4 (𝐿 ∈ ℕ → (𝐿...𝑁) ⊆ ℕ)
1311, 12syl 17 . . 3 (𝜑 → (𝐿...𝑁) ⊆ ℕ)
14 smatbl.j . . 3 (𝜑𝐽 ∈ (𝐿...𝑁))
1513, 14sseldd 3931 . 2 (𝜑𝐽 ∈ ℕ)
16 elfzolt2 13570 . . . 4 (𝐼 ∈ (1..^𝐾) → 𝐼 < 𝐾)
178, 16syl 17 . . 3 (𝜑𝐼 < 𝐾)
1817iftrued 4482 . 2 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝐼)
19 elfzle1 13429 . . . . 5 (𝐽 ∈ (𝐿...𝑁) → 𝐿𝐽)
2014, 19syl 17 . . . 4 (𝜑𝐿𝐽)
2111nnred 12147 . . . . 5 (𝜑𝐿 ∈ ℝ)
2215nnred 12147 . . . . 5 (𝜑𝐽 ∈ ℝ)
2321, 22lenltd 11266 . . . 4 (𝜑 → (𝐿𝐽 ↔ ¬ 𝐽 < 𝐿))
2420, 23mpbid 232 . . 3 (𝜑 → ¬ 𝐽 < 𝐿)
2524iffalsed 4485 . 2 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = (𝐽 + 1))
261, 2, 3, 4, 5, 6, 9, 15, 18, 25smatlem 33831 1 (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  wss 3898   class class class wbr 5093   × cxp 5617  cfv 6486  (class class class)co 7352  m cmap 8756  1c1 11014   + caddc 11016   < clt 11153  cle 11154  cn 12132  ...cfz 13409  ..^cfzo 13556  subMat1csmat 33827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-smat 33828
This theorem is referenced by:  submateq  33843
  Copyright terms: Public domain W3C validator