![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smatbl | Structured version Visualization version GIF version |
Description: Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
Ref | Expression |
---|---|
smat.s | ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) |
smat.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
smat.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
smat.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) |
smat.l | ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) |
smat.a | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) |
smatbl.i | ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) |
smatbl.j | ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) |
Ref | Expression |
---|---|
smatbl | ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smat.s | . 2 ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) | |
2 | smat.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
3 | smat.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | smat.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) | |
5 | smat.l | . 2 ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) | |
6 | smat.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) | |
7 | fzossnn 13677 | . . 3 ⊢ (1..^𝐾) ⊆ ℕ | |
8 | smatbl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) | |
9 | 7, 8 | sselid 3979 | . 2 ⊢ (𝜑 → 𝐼 ∈ ℕ) |
10 | fz1ssnn 13528 | . . . . 5 ⊢ (1...𝑁) ⊆ ℕ | |
11 | 10, 5 | sselid 3979 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ) |
12 | fzssnn 13541 | . . . 4 ⊢ (𝐿 ∈ ℕ → (𝐿...𝑁) ⊆ ℕ) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝐿...𝑁) ⊆ ℕ) |
14 | smatbl.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) | |
15 | 13, 14 | sseldd 3982 | . 2 ⊢ (𝜑 → 𝐽 ∈ ℕ) |
16 | elfzolt2 13637 | . . . 4 ⊢ (𝐼 ∈ (1..^𝐾) → 𝐼 < 𝐾) | |
17 | 8, 16 | syl 17 | . . 3 ⊢ (𝜑 → 𝐼 < 𝐾) |
18 | 17 | iftrued 4535 | . 2 ⊢ (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝐼) |
19 | elfzle1 13500 | . . . . 5 ⊢ (𝐽 ∈ (𝐿...𝑁) → 𝐿 ≤ 𝐽) | |
20 | 14, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ≤ 𝐽) |
21 | 11 | nnred 12223 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
22 | 15 | nnred 12223 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℝ) |
23 | 21, 22 | lenltd 11356 | . . . 4 ⊢ (𝜑 → (𝐿 ≤ 𝐽 ↔ ¬ 𝐽 < 𝐿)) |
24 | 20, 23 | mpbid 231 | . . 3 ⊢ (𝜑 → ¬ 𝐽 < 𝐿) |
25 | 24 | iffalsed 4538 | . 2 ⊢ (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = (𝐽 + 1)) |
26 | 1, 2, 3, 4, 5, 6, 9, 15, 18, 25 | smatlem 32765 | 1 ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 ⊆ wss 3947 class class class wbr 5147 × cxp 5673 ‘cfv 6540 (class class class)co 7405 ↑m cmap 8816 1c1 11107 + caddc 11109 < clt 11244 ≤ cle 11245 ℕcn 12208 ...cfz 13480 ..^cfzo 13623 subMat1csmat 32761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-smat 32762 |
This theorem is referenced by: submateq 32777 |
Copyright terms: Public domain | W3C validator |