Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatbl Structured version   Visualization version   GIF version

Theorem smatbl 31750
Description: Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
smatbl.i (𝜑𝐼 ∈ (1..^𝐾))
smatbl.j (𝜑𝐽 ∈ (𝐿...𝑁))
Assertion
Ref Expression
smatbl (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1)))

Proof of Theorem smatbl
StepHypRef Expression
1 smat.s . 2 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
2 smat.m . 2 (𝜑𝑀 ∈ ℕ)
3 smat.n . 2 (𝜑𝑁 ∈ ℕ)
4 smat.k . 2 (𝜑𝐾 ∈ (1...𝑀))
5 smat.l . 2 (𝜑𝐿 ∈ (1...𝑁))
6 smat.a . 2 (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
7 fzossnn 13436 . . 3 (1..^𝐾) ⊆ ℕ
8 smatbl.i . . 3 (𝜑𝐼 ∈ (1..^𝐾))
97, 8sselid 3919 . 2 (𝜑𝐼 ∈ ℕ)
10 fz1ssnn 13287 . . . . 5 (1...𝑁) ⊆ ℕ
1110, 5sselid 3919 . . . 4 (𝜑𝐿 ∈ ℕ)
12 fzssnn 13300 . . . 4 (𝐿 ∈ ℕ → (𝐿...𝑁) ⊆ ℕ)
1311, 12syl 17 . . 3 (𝜑 → (𝐿...𝑁) ⊆ ℕ)
14 smatbl.j . . 3 (𝜑𝐽 ∈ (𝐿...𝑁))
1513, 14sseldd 3922 . 2 (𝜑𝐽 ∈ ℕ)
16 elfzolt2 13396 . . . 4 (𝐼 ∈ (1..^𝐾) → 𝐼 < 𝐾)
178, 16syl 17 . . 3 (𝜑𝐼 < 𝐾)
1817iftrued 4467 . 2 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝐼)
19 elfzle1 13259 . . . . 5 (𝐽 ∈ (𝐿...𝑁) → 𝐿𝐽)
2014, 19syl 17 . . . 4 (𝜑𝐿𝐽)
2111nnred 11988 . . . . 5 (𝜑𝐿 ∈ ℝ)
2215nnred 11988 . . . . 5 (𝜑𝐽 ∈ ℝ)
2321, 22lenltd 11121 . . . 4 (𝜑 → (𝐿𝐽 ↔ ¬ 𝐽 < 𝐿))
2420, 23mpbid 231 . . 3 (𝜑 → ¬ 𝐽 < 𝐿)
2524iffalsed 4470 . 2 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = (𝐽 + 1))
261, 2, 3, 4, 5, 6, 9, 15, 18, 25smatlem 31747 1 (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  wss 3887   class class class wbr 5074   × cxp 5587  cfv 6433  (class class class)co 7275  m cmap 8615  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cn 11973  ...cfz 13239  ..^cfzo 13382  subMat1csmat 31743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-smat 31744
This theorem is referenced by:  submateq  31759
  Copyright terms: Public domain W3C validator