MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz1ssnn Structured version   Visualization version   GIF version

Theorem fz1ssnn 13516
Description: A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
fz1ssnn (1...𝐴) ⊆ ℕ

Proof of Theorem fz1ssnn
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elfznn 13514 . 2 (𝑎 ∈ (1...𝐴) → 𝑎 ∈ ℕ)
21ssriv 3950 1 (1...𝐴) ⊆ ℕ
Colors of variables: wff setvar class
Syntax hints:  wss 3914  (class class class)co 7387  1c1 11069  cn 12186  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-z 12530  df-uz 12794  df-fz 13469
This theorem is referenced by:  fzssnn  13529  fzossnn  13672  isercoll  15634  prmreclem2  16888  prmreclem3  16889  vdwnnlem1  16966  prmodvdslcmf  17018  gsumval3  19837  1stcfb  23332  1stckgenlem  23440  ovoliunlem1  25403  ovoliun2  25407  ovolicc2lem4  25421  uniioovol  25480  uniioombllem4  25487  lgamgulm2  26946  lgamcvglem  26950  fsumvma2  27125  dchrmusum2  27405  dchrvmasum2lem  27407  mudivsum  27441  mulogsum  27443  mulog2sumlem2  27446  padct  32643  psgnfzto1stlem  33057  fzto1st1  33059  smatrcl  33786  smatlem  33787  smattr  33789  smatbl  33790  smatbr  33791  1smat1  33794  submateqlem1  33797  submateqlem2  33798  submateq  33799  madjusmdetlem2  33818  madjusmdetlem3  33819  madjusmdetlem4  33820  mdetlap  33822  esumsup  34079  esumgect  34080  carsggect  34309  carsgclctunlem2  34310  ballotlemsup  34496  fsum2dsub  34598  reprgt  34612  reprfi2  34614  reprfz1  34615  hashrepr  34616  breprexplema  34621  breprexplemc  34623  breprexp  34624  breprexpnat  34625  vtscl  34629  circlemeth  34631  hgt750lemd  34639  hgt750lemb  34647  hgt750leme  34649  lcmineqlem4  42020  lcmineqlem6  42022  lcmineqlem15  42031  lcmineqlem16  42032  lcmineqlem19  42035  lcmineqlem20  42036  lcmineqlem21  42037  lcmineqlem22  42038  sticksstones1  42134  fisdomnn  42232  sumcubes  42301  eldioph4b  42799  diophren  42801  caratheodorylem2  46525  hoidmvlelem2  46594
  Copyright terms: Public domain W3C validator