| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fz1ssnn | Structured version Visualization version GIF version | ||
| Description: A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| Ref | Expression |
|---|---|
| fz1ssnn | ⊢ (1...𝐴) ⊆ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn 13492 | . 2 ⊢ (𝑎 ∈ (1...𝐴) → 𝑎 ∈ ℕ) | |
| 2 | 1 | ssriv 3947 | 1 ⊢ (1...𝐴) ⊆ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3911 (class class class)co 7369 1c1 11047 ℕcn 12164 ...cfz 13446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-z 12508 df-uz 12772 df-fz 13447 |
| This theorem is referenced by: fzssnn 13507 fzossnn 13650 isercoll 15611 prmreclem2 16865 prmreclem3 16866 vdwnnlem1 16943 prmodvdslcmf 16995 gsumval3 19822 1stcfb 23366 1stckgenlem 23474 ovoliunlem1 25437 ovoliun2 25441 ovolicc2lem4 25455 uniioovol 25514 uniioombllem4 25521 lgamgulm2 26980 lgamcvglem 26984 fsumvma2 27159 dchrmusum2 27439 dchrvmasum2lem 27441 mudivsum 27475 mulogsum 27477 mulog2sumlem2 27480 padct 32694 psgnfzto1stlem 33073 fzto1st1 33075 smatrcl 33780 smatlem 33781 smattr 33783 smatbl 33784 smatbr 33785 1smat1 33788 submateqlem1 33791 submateqlem2 33792 submateq 33793 madjusmdetlem2 33812 madjusmdetlem3 33813 madjusmdetlem4 33814 mdetlap 33816 esumsup 34073 esumgect 34074 carsggect 34303 carsgclctunlem2 34304 ballotlemsup 34490 fsum2dsub 34592 reprgt 34606 reprfi2 34608 reprfz1 34609 hashrepr 34610 breprexplema 34615 breprexplemc 34617 breprexp 34618 breprexpnat 34619 vtscl 34623 circlemeth 34625 hgt750lemd 34633 hgt750lemb 34641 hgt750leme 34643 lcmineqlem4 42014 lcmineqlem6 42016 lcmineqlem15 42025 lcmineqlem16 42026 lcmineqlem19 42029 lcmineqlem20 42030 lcmineqlem21 42031 lcmineqlem22 42032 sticksstones1 42128 fisdomnn 42226 sumcubes 42295 eldioph4b 42793 diophren 42795 caratheodorylem2 46519 hoidmvlelem2 46588 |
| Copyright terms: Public domain | W3C validator |