| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fz1ssnn | Structured version Visualization version GIF version | ||
| Description: A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| Ref | Expression |
|---|---|
| fz1ssnn | ⊢ (1...𝐴) ⊆ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn 13514 | . 2 ⊢ (𝑎 ∈ (1...𝐴) → 𝑎 ∈ ℕ) | |
| 2 | 1 | ssriv 3950 | 1 ⊢ (1...𝐴) ⊆ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 (class class class)co 7387 1c1 11069 ℕcn 12186 ...cfz 13468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-z 12530 df-uz 12794 df-fz 13469 |
| This theorem is referenced by: fzssnn 13529 fzossnn 13672 isercoll 15634 prmreclem2 16888 prmreclem3 16889 vdwnnlem1 16966 prmodvdslcmf 17018 gsumval3 19837 1stcfb 23332 1stckgenlem 23440 ovoliunlem1 25403 ovoliun2 25407 ovolicc2lem4 25421 uniioovol 25480 uniioombllem4 25487 lgamgulm2 26946 lgamcvglem 26950 fsumvma2 27125 dchrmusum2 27405 dchrvmasum2lem 27407 mudivsum 27441 mulogsum 27443 mulog2sumlem2 27446 padct 32643 psgnfzto1stlem 33057 fzto1st1 33059 smatrcl 33786 smatlem 33787 smattr 33789 smatbl 33790 smatbr 33791 1smat1 33794 submateqlem1 33797 submateqlem2 33798 submateq 33799 madjusmdetlem2 33818 madjusmdetlem3 33819 madjusmdetlem4 33820 mdetlap 33822 esumsup 34079 esumgect 34080 carsggect 34309 carsgclctunlem2 34310 ballotlemsup 34496 fsum2dsub 34598 reprgt 34612 reprfi2 34614 reprfz1 34615 hashrepr 34616 breprexplema 34621 breprexplemc 34623 breprexp 34624 breprexpnat 34625 vtscl 34629 circlemeth 34631 hgt750lemd 34639 hgt750lemb 34647 hgt750leme 34649 lcmineqlem4 42020 lcmineqlem6 42022 lcmineqlem15 42031 lcmineqlem16 42032 lcmineqlem19 42035 lcmineqlem20 42036 lcmineqlem21 42037 lcmineqlem22 42038 sticksstones1 42134 fisdomnn 42232 sumcubes 42301 eldioph4b 42799 diophren 42801 caratheodorylem2 46525 hoidmvlelem2 46594 |
| Copyright terms: Public domain | W3C validator |