![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fz1ssnn | Structured version Visualization version GIF version |
Description: A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
fz1ssnn | ⊢ (1...𝐴) ⊆ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznn 13613 | . 2 ⊢ (𝑎 ∈ (1...𝐴) → 𝑎 ∈ ℕ) | |
2 | 1 | ssriv 4012 | 1 ⊢ (1...𝐴) ⊆ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 (class class class)co 7448 1c1 11185 ℕcn 12293 ...cfz 13567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-z 12640 df-uz 12904 df-fz 13568 |
This theorem is referenced by: fzssnn 13628 fzossnn 13765 isercoll 15716 prmreclem2 16964 prmreclem3 16965 vdwnnlem1 17042 prmodvdslcmf 17094 gsumval3 19949 1stcfb 23474 1stckgenlem 23582 ovoliunlem1 25556 ovoliun2 25560 ovolicc2lem4 25574 uniioovol 25633 uniioombllem4 25640 lgamgulm2 27097 lgamcvglem 27101 fsumvma2 27276 dchrmusum2 27556 dchrvmasum2lem 27558 mudivsum 27592 mulogsum 27594 mulog2sumlem2 27597 padct 32733 psgnfzto1stlem 33093 fzto1st1 33095 smatrcl 33742 smatlem 33743 smattr 33745 smatbl 33746 smatbr 33747 1smat1 33750 submateqlem1 33753 submateqlem2 33754 submateq 33755 madjusmdetlem2 33774 madjusmdetlem3 33775 madjusmdetlem4 33776 mdetlap 33778 esumsup 34053 esumgect 34054 carsggect 34283 carsgclctunlem2 34284 ballotlemsup 34469 fsum2dsub 34584 reprgt 34598 reprfi2 34600 reprfz1 34601 hashrepr 34602 breprexplema 34607 breprexplemc 34609 breprexp 34610 breprexpnat 34611 vtscl 34615 circlemeth 34617 hgt750lemd 34625 hgt750lemb 34633 hgt750leme 34635 lcmineqlem4 41989 lcmineqlem6 41991 lcmineqlem15 42000 lcmineqlem16 42001 lcmineqlem19 42004 lcmineqlem20 42005 lcmineqlem21 42006 lcmineqlem22 42007 sticksstones1 42103 fisdomnn 42239 sumcubes 42301 eldioph4b 42767 diophren 42769 caratheodorylem2 46448 hoidmvlelem2 46517 |
Copyright terms: Public domain | W3C validator |