Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fz1ssnn | Structured version Visualization version GIF version |
Description: A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
fz1ssnn | ⊢ (1...𝐴) ⊆ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznn 13214 | . 2 ⊢ (𝑎 ∈ (1...𝐴) → 𝑎 ∈ ℕ) | |
2 | 1 | ssriv 3921 | 1 ⊢ (1...𝐴) ⊆ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 (class class class)co 7255 1c1 10803 ℕcn 11903 ...cfz 13168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-z 12250 df-uz 12512 df-fz 13169 |
This theorem is referenced by: fzssnn 13229 fzossnn 13364 isercoll 15307 prmreclem2 16546 prmreclem3 16547 vdwnnlem1 16624 prmodvdslcmf 16676 gsumval3 19423 1stcfb 22504 1stckgenlem 22612 ovoliunlem1 24571 ovoliun2 24575 ovolicc2lem4 24589 uniioovol 24648 uniioombllem4 24655 lgamgulm2 26090 lgamcvglem 26094 fsumvma2 26267 dchrmusum2 26547 dchrvmasum2lem 26549 mudivsum 26583 mulogsum 26585 mulog2sumlem2 26588 padct 30956 psgnfzto1stlem 31269 fzto1st1 31271 smatrcl 31648 smatlem 31649 smattr 31651 smatbl 31652 smatbr 31653 1smat1 31656 submateqlem1 31659 submateqlem2 31660 submateq 31661 madjusmdetlem2 31680 madjusmdetlem3 31681 madjusmdetlem4 31682 mdetlap 31684 esumsup 31957 esumgect 31958 carsggect 32185 carsgclctunlem2 32186 ballotlemsup 32371 fsum2dsub 32487 reprgt 32501 reprfi2 32503 reprfz1 32504 hashrepr 32505 breprexplema 32510 breprexplemc 32512 breprexp 32513 breprexpnat 32514 vtscl 32518 circlemeth 32520 hgt750lemd 32528 hgt750lemb 32536 hgt750leme 32538 lcmineqlem4 39968 lcmineqlem6 39970 lcmineqlem15 39979 lcmineqlem16 39980 lcmineqlem19 39983 lcmineqlem20 39984 lcmineqlem21 39985 lcmineqlem22 39986 sticksstones1 40030 eldioph4b 40549 diophren 40551 caratheodorylem2 43955 hoidmvlelem2 44024 |
Copyright terms: Public domain | W3C validator |