| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fz1ssnn | Structured version Visualization version GIF version | ||
| Description: A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| Ref | Expression |
|---|---|
| fz1ssnn | ⊢ (1...𝐴) ⊆ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn 13453 | . 2 ⊢ (𝑎 ∈ (1...𝐴) → 𝑎 ∈ ℕ) | |
| 2 | 1 | ssriv 3933 | 1 ⊢ (1...𝐴) ⊆ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3897 (class class class)co 7346 1c1 11007 ℕcn 12125 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-z 12469 df-uz 12733 df-fz 13408 |
| This theorem is referenced by: fzssnn 13468 fzossnn 13611 isercoll 15575 prmreclem2 16829 prmreclem3 16830 vdwnnlem1 16907 prmodvdslcmf 16959 gsumval3 19819 1stcfb 23360 1stckgenlem 23468 ovoliunlem1 25430 ovoliun2 25434 ovolicc2lem4 25448 uniioovol 25507 uniioombllem4 25514 lgamgulm2 26973 lgamcvglem 26977 fsumvma2 27152 dchrmusum2 27432 dchrvmasum2lem 27434 mudivsum 27468 mulogsum 27470 mulog2sumlem2 27473 padct 32701 psgnfzto1stlem 33069 fzto1st1 33071 smatrcl 33809 smatlem 33810 smattr 33812 smatbl 33813 smatbr 33814 1smat1 33817 submateqlem1 33820 submateqlem2 33821 submateq 33822 madjusmdetlem2 33841 madjusmdetlem3 33842 madjusmdetlem4 33843 mdetlap 33845 esumsup 34102 esumgect 34103 carsggect 34331 carsgclctunlem2 34332 ballotlemsup 34518 fsum2dsub 34620 reprgt 34634 reprfi2 34636 reprfz1 34637 hashrepr 34638 breprexplema 34643 breprexplemc 34645 breprexp 34646 breprexpnat 34647 vtscl 34651 circlemeth 34653 hgt750lemd 34661 hgt750lemb 34669 hgt750leme 34671 lcmineqlem4 42124 lcmineqlem6 42126 lcmineqlem15 42135 lcmineqlem16 42136 lcmineqlem19 42139 lcmineqlem20 42140 lcmineqlem21 42141 lcmineqlem22 42142 sticksstones1 42238 fisdomnn 42336 sumcubes 42405 eldioph4b 42903 diophren 42905 caratheodorylem2 46624 hoidmvlelem2 46693 |
| Copyright terms: Public domain | W3C validator |