| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fz1ssnn | Structured version Visualization version GIF version | ||
| Description: A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| Ref | Expression |
|---|---|
| fz1ssnn | ⊢ (1...𝐴) ⊆ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn 13521 | . 2 ⊢ (𝑎 ∈ (1...𝐴) → 𝑎 ∈ ℕ) | |
| 2 | 1 | ssriv 3953 | 1 ⊢ (1...𝐴) ⊆ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 (class class class)co 7390 1c1 11076 ℕcn 12193 ...cfz 13475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-z 12537 df-uz 12801 df-fz 13476 |
| This theorem is referenced by: fzssnn 13536 fzossnn 13679 isercoll 15641 prmreclem2 16895 prmreclem3 16896 vdwnnlem1 16973 prmodvdslcmf 17025 gsumval3 19844 1stcfb 23339 1stckgenlem 23447 ovoliunlem1 25410 ovoliun2 25414 ovolicc2lem4 25428 uniioovol 25487 uniioombllem4 25494 lgamgulm2 26953 lgamcvglem 26957 fsumvma2 27132 dchrmusum2 27412 dchrvmasum2lem 27414 mudivsum 27448 mulogsum 27450 mulog2sumlem2 27453 padct 32650 psgnfzto1stlem 33064 fzto1st1 33066 smatrcl 33793 smatlem 33794 smattr 33796 smatbl 33797 smatbr 33798 1smat1 33801 submateqlem1 33804 submateqlem2 33805 submateq 33806 madjusmdetlem2 33825 madjusmdetlem3 33826 madjusmdetlem4 33827 mdetlap 33829 esumsup 34086 esumgect 34087 carsggect 34316 carsgclctunlem2 34317 ballotlemsup 34503 fsum2dsub 34605 reprgt 34619 reprfi2 34621 reprfz1 34622 hashrepr 34623 breprexplema 34628 breprexplemc 34630 breprexp 34631 breprexpnat 34632 vtscl 34636 circlemeth 34638 hgt750lemd 34646 hgt750lemb 34654 hgt750leme 34656 lcmineqlem4 42027 lcmineqlem6 42029 lcmineqlem15 42038 lcmineqlem16 42039 lcmineqlem19 42042 lcmineqlem20 42043 lcmineqlem21 42044 lcmineqlem22 42045 sticksstones1 42141 fisdomnn 42239 sumcubes 42308 eldioph4b 42806 diophren 42808 caratheodorylem2 46532 hoidmvlelem2 46601 |
| Copyright terms: Public domain | W3C validator |