MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz1ssnn Structured version   Visualization version   GIF version

Theorem fz1ssnn 13514
Description: A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
fz1ssnn (1...𝐴) ⊆ ℕ

Proof of Theorem fz1ssnn
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elfznn 13512 . 2 (𝑎 ∈ (1...𝐴) → 𝑎 ∈ ℕ)
21ssriv 3982 1 (1...𝐴) ⊆ ℕ
Colors of variables: wff setvar class
Syntax hints:  wss 3944  (class class class)co 7393  1c1 11093  cn 12194  ...cfz 13466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-z 12541  df-uz 12805  df-fz 13467
This theorem is referenced by:  fzssnn  13527  fzossnn  13663  isercoll  15596  prmreclem2  16832  prmreclem3  16833  vdwnnlem1  16910  prmodvdslcmf  16962  gsumval3  19734  1stcfb  22878  1stckgenlem  22986  ovoliunlem1  24948  ovoliun2  24952  ovolicc2lem4  24966  uniioovol  25025  uniioombllem4  25032  lgamgulm2  26467  lgamcvglem  26471  fsumvma2  26644  dchrmusum2  26924  dchrvmasum2lem  26926  mudivsum  26960  mulogsum  26962  mulog2sumlem2  26965  padct  31815  psgnfzto1stlem  32130  fzto1st1  32132  smatrcl  32605  smatlem  32606  smattr  32608  smatbl  32609  smatbr  32610  1smat1  32613  submateqlem1  32616  submateqlem2  32617  submateq  32618  madjusmdetlem2  32637  madjusmdetlem3  32638  madjusmdetlem4  32639  mdetlap  32641  esumsup  32916  esumgect  32917  carsggect  33146  carsgclctunlem2  33147  ballotlemsup  33332  fsum2dsub  33448  reprgt  33462  reprfi2  33464  reprfz1  33465  hashrepr  33466  breprexplema  33471  breprexplemc  33473  breprexp  33474  breprexpnat  33475  vtscl  33479  circlemeth  33481  hgt750lemd  33489  hgt750lemb  33497  hgt750leme  33499  lcmineqlem4  40700  lcmineqlem6  40702  lcmineqlem15  40711  lcmineqlem16  40712  lcmineqlem19  40715  lcmineqlem20  40716  lcmineqlem21  40717  lcmineqlem22  40718  sticksstones1  40765  eldioph4b  41318  diophren  41320  caratheodorylem2  45014  hoidmvlelem2  45083
  Copyright terms: Public domain W3C validator