Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fz1ssnn | Structured version Visualization version GIF version |
Description: A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
fz1ssnn | ⊢ (1...𝐴) ⊆ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznn 12985 | . 2 ⊢ (𝑎 ∈ (1...𝐴) → 𝑎 ∈ ℕ) | |
2 | 1 | ssriv 3896 | 1 ⊢ (1...𝐴) ⊆ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3858 (class class class)co 7150 1c1 10576 ℕcn 11674 ...cfz 12939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-z 12021 df-uz 12283 df-fz 12940 |
This theorem is referenced by: fzssnn 13000 fzossnn 13135 isercoll 15072 prmreclem2 16308 prmreclem3 16309 vdwnnlem1 16386 prmodvdslcmf 16438 gsumval3 19095 1stcfb 22145 1stckgenlem 22253 ovoliunlem1 24202 ovoliun2 24206 ovolicc2lem4 24220 uniioovol 24279 uniioombllem4 24286 lgamgulm2 25720 lgamcvglem 25724 fsumvma2 25897 dchrmusum2 26177 dchrvmasum2lem 26179 mudivsum 26213 mulogsum 26215 mulog2sumlem2 26218 padct 30578 psgnfzto1stlem 30893 fzto1st1 30895 smatrcl 31267 smatlem 31268 smattr 31270 smatbl 31271 smatbr 31272 1smat1 31275 submateqlem1 31278 submateqlem2 31279 submateq 31280 madjusmdetlem2 31299 madjusmdetlem3 31300 madjusmdetlem4 31301 mdetlap 31303 esumsup 31576 esumgect 31577 carsggect 31804 carsgclctunlem2 31805 ballotlemsup 31990 fsum2dsub 32106 reprgt 32120 reprfi2 32122 reprfz1 32123 hashrepr 32124 breprexplema 32129 breprexplemc 32131 breprexp 32132 breprexpnat 32133 vtscl 32137 circlemeth 32139 hgt750lemd 32147 hgt750lemb 32155 hgt750leme 32157 lcmineqlem4 39599 lcmineqlem6 39601 lcmineqlem15 39610 lcmineqlem16 39611 lcmineqlem19 39614 lcmineqlem20 39615 lcmineqlem21 39616 lcmineqlem22 39617 eldioph4b 40125 diophren 40127 caratheodorylem2 43532 hoidmvlelem2 43601 |
Copyright terms: Public domain | W3C validator |