Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resqcl | Structured version Visualization version GIF version |
Description: Closure of the square of a real number. (Contributed by NM, 18-Oct-1999.) |
Ref | Expression |
---|---|
resqcl | ⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12352 | . 2 ⊢ 2 ∈ ℕ0 | |
2 | reexpcl 13901 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ ℕ0) → (𝐴↑2) ∈ ℝ) | |
3 | 1, 2 | mpan2 688 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 (class class class)co 7338 ℝcr 10972 2c2 12130 ℕ0cn0 12335 ↑cexp 13884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-n0 12336 df-z 12422 df-uz 12685 df-seq 13824 df-exp 13885 |
This theorem is referenced by: sqn0rp 13948 sumsqeq0 13998 resqcli 14005 discr1 14056 discr 14057 resqcld 14067 sqrtsq 15081 sqabs 15119 sqreulem 15171 resin4p 15947 recos4p 15948 isprm7 16511 atanre 26142 ressatans 26191 2lgsoddprmlem2 26664 dchrisum0 26775 ax5seglem6 27592 htthlem 29568 nmopcoadji 30752 dvasin 36017 areacirclem1 36021 areacirclem2 36022 areacirclem4 36024 areacirclem5 36025 areacirc 36026 smfmullem1 44718 resum2sqorgt0 46473 ehl2eudis0lt 46490 2sphere 46513 itsclc0yqsollem2 46527 itsclquadb 46540 |
Copyright terms: Public domain | W3C validator |