![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqeq0 | Structured version Visualization version GIF version |
Description: A complex number is zero iff its square is zero. (Contributed by NM, 11-Mar-2006.) |
Ref | Expression |
---|---|
sqeq0 | ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12267 | . 2 ⊢ 2 ∈ ℕ | |
2 | expeq0 14040 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ) → ((𝐴↑2) = 0 ↔ 𝐴 = 0)) | |
3 | 1, 2 | mpan2 689 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 (class class class)co 7393 ℂcc 11090 0cc0 11092 ℕcn 12194 2c2 12249 ↑cexp 14009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-n0 12455 df-z 12541 df-uz 12805 df-seq 13949 df-exp 14010 |
This theorem is referenced by: sqne0 14070 sumsqeq0 14125 sqeq0i 14128 sqrt0 15170 sqreulem 15288 reusq0 15391 dvdssq 16486 4sqlem9 16861 gzrngunitlem 20944 tcphcph 24683 rrxmet 24854 minveclem7 24881 dvmptdiv 25420 coseq1 25963 lgsdir 26762 2sqlem7 26854 2sqlem8a 26855 addsq2reu 26870 eqeelen 28027 axcgrid 28039 ipz 29835 minvecolem7 29999 riesz4i 31179 hst1h 31343 hstoh 31348 tan2h 36284 rrnmet 36502 sqrtcval 42163 onetansqsecsq 47454 |
Copyright terms: Public domain | W3C validator |