![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzind4 | Structured version Visualization version GIF version |
Description: Induction on the upper set of integers that starts at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.) |
Ref | Expression |
---|---|
uzind4.1 | ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) |
uzind4.2 | ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) |
uzind4.3 | ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) |
uzind4.4 | ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) |
uzind4.5 | ⊢ (𝑀 ∈ ℤ → 𝜓) |
uzind4.6 | ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
uzind4 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 12001 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | breq2 4892 | . . 3 ⊢ (𝑚 = 𝑁 → (𝑀 ≤ 𝑚 ↔ 𝑀 ≤ 𝑁)) | |
3 | eluzelz 12006 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
4 | eluzle 12009 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
5 | 2, 3, 4 | elrabd 3575 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) |
6 | uzind4.1 | . . 3 ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) | |
7 | uzind4.2 | . . 3 ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) | |
8 | uzind4.3 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) | |
9 | uzind4.4 | . . 3 ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) | |
10 | uzind4.5 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝜓) | |
11 | breq2 4892 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝑀 ≤ 𝑚 ↔ 𝑀 ≤ 𝑘)) | |
12 | 11 | elrab 3572 | . . . . 5 ⊢ (𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚} ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) |
13 | eluz2 12002 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) | |
14 | 13 | biimpri 220 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑀)) |
15 | 14 | 3expb 1110 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
16 | 12, 15 | sylan2b 587 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) → 𝑘 ∈ (ℤ≥‘𝑀)) |
17 | uzind4.6 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) → (𝜒 → 𝜃)) |
19 | 6, 7, 8, 9, 10, 18 | uzind3 11827 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) → 𝜏) |
20 | 1, 5, 19 | syl2anc 579 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 {crab 3094 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 1c1 10275 + caddc 10277 ≤ cle 10414 ℤcz 11732 ℤ≥cuz 11996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-n0 11647 df-z 11733 df-uz 11997 |
This theorem is referenced by: uzind4ALT 12057 uzind4s 12058 uzind4s2 12059 uzind4i 12060 uzind4iOLD 12061 seqcl2 13141 seqshft2 13149 seqsplit 13156 seqf1o 13164 seqid2 13169 clim2prod 15027 fprodabs 15111 fprodefsum 15231 seq1st 15694 1stcelcls 21677 caubl 23518 caublcls 23519 volsuplem 23763 cpnord 24139 aaliou3lem2 24539 bcmono 25458 sseqp1 31060 iprodefisumlem 32224 sdclem2 34167 seqpo 34172 mettrifi 34182 incssnn0 38244 dvgrat 39477 monoordxrv 40627 climsuselem1 40757 smonoord 42383 |
Copyright terms: Public domain | W3C validator |