MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzind4 Structured version   Visualization version   GIF version

Theorem uzind4 12056
Description: Induction on the upper set of integers that starts at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.)
Hypotheses
Ref Expression
uzind4.1 (𝑗 = 𝑀 → (𝜑𝜓))
uzind4.2 (𝑗 = 𝑘 → (𝜑𝜒))
uzind4.3 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
uzind4.4 (𝑗 = 𝑁 → (𝜑𝜏))
uzind4.5 (𝑀 ∈ ℤ → 𝜓)
uzind4.6 (𝑘 ∈ (ℤ𝑀) → (𝜒𝜃))
Assertion
Ref Expression
uzind4 (𝑁 ∈ (ℤ𝑀) → 𝜏)
Distinct variable groups:   𝑗,𝑁   𝜓,𝑗   𝜒,𝑗   𝜃,𝑗   𝜏,𝑗   𝜑,𝑘   𝑗,𝑘,𝑀
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝑁(𝑘)

Proof of Theorem uzind4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eluzel2 12001 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 breq2 4892 . . 3 (𝑚 = 𝑁 → (𝑀𝑚𝑀𝑁))
3 eluzelz 12006 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
4 eluzle 12009 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
52, 3, 4elrabd 3575 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚})
6 uzind4.1 . . 3 (𝑗 = 𝑀 → (𝜑𝜓))
7 uzind4.2 . . 3 (𝑗 = 𝑘 → (𝜑𝜒))
8 uzind4.3 . . 3 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
9 uzind4.4 . . 3 (𝑗 = 𝑁 → (𝜑𝜏))
10 uzind4.5 . . 3 (𝑀 ∈ ℤ → 𝜓)
11 breq2 4892 . . . . . 6 (𝑚 = 𝑘 → (𝑀𝑚𝑀𝑘))
1211elrab 3572 . . . . 5 (𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚} ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘))
13 eluz2 12002 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘))
1413biimpri 220 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → 𝑘 ∈ (ℤ𝑀))
15143expb 1110 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝑘 ∈ (ℤ𝑀))
1612, 15sylan2b 587 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚}) → 𝑘 ∈ (ℤ𝑀))
17 uzind4.6 . . . 4 (𝑘 ∈ (ℤ𝑀) → (𝜒𝜃))
1816, 17syl 17 . . 3 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚}) → (𝜒𝜃))
196, 7, 8, 9, 10, 18uzind3 11827 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚}) → 𝜏)
201, 5, 19syl2anc 579 1 (𝑁 ∈ (ℤ𝑀) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  {crab 3094   class class class wbr 4888  cfv 6137  (class class class)co 6924  1c1 10275   + caddc 10277  cle 10414  cz 11732  cuz 11996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-n0 11647  df-z 11733  df-uz 11997
This theorem is referenced by:  uzind4ALT  12057  uzind4s  12058  uzind4s2  12059  uzind4i  12060  uzind4iOLD  12061  seqcl2  13141  seqshft2  13149  seqsplit  13156  seqf1o  13164  seqid2  13169  clim2prod  15027  fprodabs  15111  fprodefsum  15231  seq1st  15694  1stcelcls  21677  caubl  23518  caublcls  23519  volsuplem  23763  cpnord  24139  aaliou3lem2  24539  bcmono  25458  sseqp1  31060  iprodefisumlem  32224  sdclem2  34167  seqpo  34172  mettrifi  34182  incssnn0  38244  dvgrat  39477  monoordxrv  40627  climsuselem1  40757  smonoord  42383
  Copyright terms: Public domain W3C validator