Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluznn | Structured version Visualization version GIF version |
Description: Membership in a positive upper set of integers implies membership in ℕ. (Contributed by JJ, 1-Oct-2018.) |
Ref | Expression |
---|---|
eluznn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12311 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1 | uztrn2 12291 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∈ wcel 2112 ‘cfv 6333 1c1 10566 ℕcn 11664 ℤ≥cuz 12272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-nn 11665 df-z 12011 df-uz 12273 |
This theorem is referenced by: elfzo1 13126 expmulnbnd 13636 bcval5 13718 isercolllem1 15059 isercoll 15062 o1fsum 15206 climcndslem1 15242 climcndslem2 15243 climcnds 15244 mertenslem2 15279 rpnnen2lem6 15610 rpnnen2lem7 15611 rpnnen2lem9 15613 rpnnen2lem11 15615 pcmpt2 16274 pcmptdvds 16275 prmreclem4 16300 prmreclem5 16301 prmreclem6 16302 vdwnnlem2 16377 2expltfac 16474 1stcelcls 22151 lmnn 23953 cmetcaulem 23978 causs 23988 caubl 23998 caublcls 23999 ovolunlem1a 24186 volsuplem 24245 uniioombllem3 24275 mbfi1fseqlem6 24410 aaliou3lem2 25028 birthdaylem2 25627 lgamgulmlem4 25706 lgamcvg2 25729 chtub 25885 bclbnd 25953 bposlem3 25959 bposlem4 25960 bposlem5 25961 bposlem6 25962 lgsdilem2 26006 chebbnd1lem1 26142 chebbnd1lem2 26143 chebbnd1lem3 26144 dchrisumlema 26161 dchrisumlem2 26163 dchrisumlem3 26164 dchrisum0lem1b 26188 dchrisum0lem1 26189 pntrsumbnd2 26240 pntpbnd1 26259 pntpbnd2 26260 pntlemh 26272 pntlemq 26274 pntlemr 26275 pntlemj 26276 pntlemf 26278 minvecolem3 28748 minvecolem4 28752 h2hcau 28851 h2hlm 28852 chscllem2 29510 sinccvglem 33136 lmclim2 35466 geomcau 35467 heibor1lem 35517 rrncmslem 35540 aks4d1p1 39632 divcnvg 42625 stoweidlem7 43005 stirlinglem12 43083 fourierdlem103 43207 fourierdlem104 43208 |
Copyright terms: Public domain | W3C validator |