| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluznn | Structured version Visualization version GIF version | ||
| Description: Membership in a positive upper set of integers implies membership in ℕ. (Contributed by JJ, 1-Oct-2018.) |
| Ref | Expression |
|---|---|
| eluznn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12775 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1 | uztrn2 12751 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ‘cfv 6481 1c1 11007 ℕcn 12125 ℤ≥cuz 12732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-z 12469 df-uz 12733 |
| This theorem is referenced by: elfzo1 13612 expmulnbnd 14142 bcval5 14225 isercolllem1 15572 isercoll 15575 o1fsum 15720 climcndslem1 15756 climcndslem2 15757 climcnds 15758 mertenslem2 15792 rpnnen2lem6 16128 rpnnen2lem7 16129 rpnnen2lem9 16131 rpnnen2lem11 16133 pcmpt2 16805 pcmptdvds 16806 prmreclem4 16831 prmreclem5 16832 prmreclem6 16833 vdwnnlem2 16908 2expltfac 17004 1stcelcls 23376 lmnn 25190 cmetcaulem 25215 causs 25225 caubl 25235 caublcls 25236 ovolunlem1a 25424 volsuplem 25483 uniioombllem3 25513 mbfi1fseqlem6 25648 aaliou3lem2 26278 birthdaylem2 26889 lgamgulmlem4 26969 lgamcvg2 26992 chtub 27150 bclbnd 27218 bposlem3 27224 bposlem4 27225 bposlem5 27226 bposlem6 27227 lgsdilem2 27271 chebbnd1lem1 27407 chebbnd1lem2 27408 chebbnd1lem3 27409 dchrisumlema 27426 dchrisumlem2 27428 dchrisumlem3 27429 dchrisum0lem1b 27453 dchrisum0lem1 27454 pntrsumbnd2 27505 pntpbnd1 27524 pntpbnd2 27525 pntlemh 27537 pntlemq 27539 pntlemr 27540 pntlemj 27541 pntlemf 27543 minvecolem3 30856 minvecolem4 30860 h2hcau 30959 h2hlm 30960 chscllem2 31618 sinccvglem 35716 lmclim2 37808 geomcau 37809 heibor1lem 37859 rrncmslem 37882 aks4d1p1 42179 fimgmcyc 42637 divcnvg 45737 stoweidlem7 46115 stirlinglem12 46193 fourierdlem103 46317 fourierdlem104 46318 |
| Copyright terms: Public domain | W3C validator |