Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluznn | Structured version Visualization version GIF version |
Description: Membership in a positive upper set of integers implies membership in ℕ. (Contributed by JJ, 1-Oct-2018.) |
Ref | Expression |
---|---|
eluznn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12621 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1 | uztrn2 12601 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ‘cfv 6433 1c1 10872 ℕcn 11973 ℤ≥cuz 12582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-z 12320 df-uz 12583 |
This theorem is referenced by: elfzo1 13437 expmulnbnd 13950 bcval5 14032 isercolllem1 15376 isercoll 15379 o1fsum 15525 climcndslem1 15561 climcndslem2 15562 climcnds 15563 mertenslem2 15597 rpnnen2lem6 15928 rpnnen2lem7 15929 rpnnen2lem9 15931 rpnnen2lem11 15933 pcmpt2 16594 pcmptdvds 16595 prmreclem4 16620 prmreclem5 16621 prmreclem6 16622 vdwnnlem2 16697 2expltfac 16794 1stcelcls 22612 lmnn 24427 cmetcaulem 24452 causs 24462 caubl 24472 caublcls 24473 ovolunlem1a 24660 volsuplem 24719 uniioombllem3 24749 mbfi1fseqlem6 24885 aaliou3lem2 25503 birthdaylem2 26102 lgamgulmlem4 26181 lgamcvg2 26204 chtub 26360 bclbnd 26428 bposlem3 26434 bposlem4 26435 bposlem5 26436 bposlem6 26437 lgsdilem2 26481 chebbnd1lem1 26617 chebbnd1lem2 26618 chebbnd1lem3 26619 dchrisumlema 26636 dchrisumlem2 26638 dchrisumlem3 26639 dchrisum0lem1b 26663 dchrisum0lem1 26664 pntrsumbnd2 26715 pntpbnd1 26734 pntpbnd2 26735 pntlemh 26747 pntlemq 26749 pntlemr 26750 pntlemj 26751 pntlemf 26753 minvecolem3 29238 minvecolem4 29242 h2hcau 29341 h2hlm 29342 chscllem2 30000 sinccvglem 33630 lmclim2 35916 geomcau 35917 heibor1lem 35967 rrncmslem 35990 aks4d1p1 40084 divcnvg 43168 stoweidlem7 43548 stirlinglem12 43626 fourierdlem103 43750 fourierdlem104 43751 |
Copyright terms: Public domain | W3C validator |