Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluznn | Structured version Visualization version GIF version |
Description: Membership in a positive upper set of integers implies membership in ℕ. (Contributed by JJ, 1-Oct-2018.) |
Ref | Expression |
---|---|
eluznn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12550 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1 | uztrn2 12530 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ‘cfv 6418 1c1 10803 ℕcn 11903 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-z 12250 df-uz 12512 |
This theorem is referenced by: elfzo1 13365 expmulnbnd 13878 bcval5 13960 isercolllem1 15304 isercoll 15307 o1fsum 15453 climcndslem1 15489 climcndslem2 15490 climcnds 15491 mertenslem2 15525 rpnnen2lem6 15856 rpnnen2lem7 15857 rpnnen2lem9 15859 rpnnen2lem11 15861 pcmpt2 16522 pcmptdvds 16523 prmreclem4 16548 prmreclem5 16549 prmreclem6 16550 vdwnnlem2 16625 2expltfac 16722 1stcelcls 22520 lmnn 24332 cmetcaulem 24357 causs 24367 caubl 24377 caublcls 24378 ovolunlem1a 24565 volsuplem 24624 uniioombllem3 24654 mbfi1fseqlem6 24790 aaliou3lem2 25408 birthdaylem2 26007 lgamgulmlem4 26086 lgamcvg2 26109 chtub 26265 bclbnd 26333 bposlem3 26339 bposlem4 26340 bposlem5 26341 bposlem6 26342 lgsdilem2 26386 chebbnd1lem1 26522 chebbnd1lem2 26523 chebbnd1lem3 26524 dchrisumlema 26541 dchrisumlem2 26543 dchrisumlem3 26544 dchrisum0lem1b 26568 dchrisum0lem1 26569 pntrsumbnd2 26620 pntpbnd1 26639 pntpbnd2 26640 pntlemh 26652 pntlemq 26654 pntlemr 26655 pntlemj 26656 pntlemf 26658 minvecolem3 29139 minvecolem4 29143 h2hcau 29242 h2hlm 29243 chscllem2 29901 sinccvglem 33530 lmclim2 35843 geomcau 35844 heibor1lem 35894 rrncmslem 35917 aks4d1p1 40012 divcnvg 43058 stoweidlem7 43438 stirlinglem12 43516 fourierdlem103 43640 fourierdlem104 43641 |
Copyright terms: Public domain | W3C validator |