| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluznn | Structured version Visualization version GIF version | ||
| Description: Membership in a positive upper set of integers implies membership in ℕ. (Contributed by JJ, 1-Oct-2018.) |
| Ref | Expression |
|---|---|
| eluznn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12812 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1 | uztrn2 12788 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ‘cfv 6499 1c1 11045 ℕcn 12162 ℤ≥cuz 12769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-z 12506 df-uz 12770 |
| This theorem is referenced by: elfzo1 13649 expmulnbnd 14176 bcval5 14259 isercolllem1 15607 isercoll 15610 o1fsum 15755 climcndslem1 15791 climcndslem2 15792 climcnds 15793 mertenslem2 15827 rpnnen2lem6 16163 rpnnen2lem7 16164 rpnnen2lem9 16166 rpnnen2lem11 16168 pcmpt2 16840 pcmptdvds 16841 prmreclem4 16866 prmreclem5 16867 prmreclem6 16868 vdwnnlem2 16943 2expltfac 17039 1stcelcls 23324 lmnn 25139 cmetcaulem 25164 causs 25174 caubl 25184 caublcls 25185 ovolunlem1a 25373 volsuplem 25432 uniioombllem3 25462 mbfi1fseqlem6 25597 aaliou3lem2 26227 birthdaylem2 26838 lgamgulmlem4 26918 lgamcvg2 26941 chtub 27099 bclbnd 27167 bposlem3 27173 bposlem4 27174 bposlem5 27175 bposlem6 27176 lgsdilem2 27220 chebbnd1lem1 27356 chebbnd1lem2 27357 chebbnd1lem3 27358 dchrisumlema 27375 dchrisumlem2 27377 dchrisumlem3 27378 dchrisum0lem1b 27402 dchrisum0lem1 27403 pntrsumbnd2 27454 pntpbnd1 27473 pntpbnd2 27474 pntlemh 27486 pntlemq 27488 pntlemr 27489 pntlemj 27490 pntlemf 27492 minvecolem3 30778 minvecolem4 30782 h2hcau 30881 h2hlm 30882 chscllem2 31540 sinccvglem 35632 lmclim2 37725 geomcau 37726 heibor1lem 37776 rrncmslem 37799 aks4d1p1 42037 fimgmcyc 42495 divcnvg 45598 stoweidlem7 45978 stirlinglem12 46056 fourierdlem103 46180 fourierdlem104 46181 |
| Copyright terms: Public domain | W3C validator |