![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluznn | Structured version Visualization version GIF version |
Description: Membership in a positive upper set of integers implies membership in ℕ. (Contributed by JJ, 1-Oct-2018.) |
Ref | Expression |
---|---|
eluznn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12946 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1 | uztrn2 12922 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ‘cfv 6573 1c1 11185 ℕcn 12293 ℤ≥cuz 12903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-z 12640 df-uz 12904 |
This theorem is referenced by: elfzo1 13766 expmulnbnd 14284 bcval5 14367 isercolllem1 15713 isercoll 15716 o1fsum 15861 climcndslem1 15897 climcndslem2 15898 climcnds 15899 mertenslem2 15933 rpnnen2lem6 16267 rpnnen2lem7 16268 rpnnen2lem9 16270 rpnnen2lem11 16272 pcmpt2 16940 pcmptdvds 16941 prmreclem4 16966 prmreclem5 16967 prmreclem6 16968 vdwnnlem2 17043 2expltfac 17140 1stcelcls 23490 lmnn 25316 cmetcaulem 25341 causs 25351 caubl 25361 caublcls 25362 ovolunlem1a 25550 volsuplem 25609 uniioombllem3 25639 mbfi1fseqlem6 25775 aaliou3lem2 26403 birthdaylem2 27013 lgamgulmlem4 27093 lgamcvg2 27116 chtub 27274 bclbnd 27342 bposlem3 27348 bposlem4 27349 bposlem5 27350 bposlem6 27351 lgsdilem2 27395 chebbnd1lem1 27531 chebbnd1lem2 27532 chebbnd1lem3 27533 dchrisumlema 27550 dchrisumlem2 27552 dchrisumlem3 27553 dchrisum0lem1b 27577 dchrisum0lem1 27578 pntrsumbnd2 27629 pntpbnd1 27648 pntpbnd2 27649 pntlemh 27661 pntlemq 27663 pntlemr 27664 pntlemj 27665 pntlemf 27667 minvecolem3 30908 minvecolem4 30912 h2hcau 31011 h2hlm 31012 chscllem2 31670 sinccvglem 35640 lmclim2 37718 geomcau 37719 heibor1lem 37769 rrncmslem 37792 aks4d1p1 42033 fimgmcyc 42489 divcnvg 45548 stoweidlem7 45928 stirlinglem12 46006 fourierdlem103 46130 fourierdlem104 46131 |
Copyright terms: Public domain | W3C validator |