| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluznn | Structured version Visualization version GIF version | ||
| Description: Membership in a positive upper set of integers implies membership in ℕ. (Contributed by JJ, 1-Oct-2018.) |
| Ref | Expression |
|---|---|
| eluznn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12843 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1 | uztrn2 12819 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ‘cfv 6514 1c1 11076 ℕcn 12193 ℤ≥cuz 12800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-z 12537 df-uz 12801 |
| This theorem is referenced by: elfzo1 13680 expmulnbnd 14207 bcval5 14290 isercolllem1 15638 isercoll 15641 o1fsum 15786 climcndslem1 15822 climcndslem2 15823 climcnds 15824 mertenslem2 15858 rpnnen2lem6 16194 rpnnen2lem7 16195 rpnnen2lem9 16197 rpnnen2lem11 16199 pcmpt2 16871 pcmptdvds 16872 prmreclem4 16897 prmreclem5 16898 prmreclem6 16899 vdwnnlem2 16974 2expltfac 17070 1stcelcls 23355 lmnn 25170 cmetcaulem 25195 causs 25205 caubl 25215 caublcls 25216 ovolunlem1a 25404 volsuplem 25463 uniioombllem3 25493 mbfi1fseqlem6 25628 aaliou3lem2 26258 birthdaylem2 26869 lgamgulmlem4 26949 lgamcvg2 26972 chtub 27130 bclbnd 27198 bposlem3 27204 bposlem4 27205 bposlem5 27206 bposlem6 27207 lgsdilem2 27251 chebbnd1lem1 27387 chebbnd1lem2 27388 chebbnd1lem3 27389 dchrisumlema 27406 dchrisumlem2 27408 dchrisumlem3 27409 dchrisum0lem1b 27433 dchrisum0lem1 27434 pntrsumbnd2 27485 pntpbnd1 27504 pntpbnd2 27505 pntlemh 27517 pntlemq 27519 pntlemr 27520 pntlemj 27521 pntlemf 27523 minvecolem3 30812 minvecolem4 30816 h2hcau 30915 h2hlm 30916 chscllem2 31574 sinccvglem 35666 lmclim2 37759 geomcau 37760 heibor1lem 37810 rrncmslem 37833 aks4d1p1 42071 fimgmcyc 42529 divcnvg 45632 stoweidlem7 46012 stirlinglem12 46090 fourierdlem103 46214 fourierdlem104 46215 |
| Copyright terms: Public domain | W3C validator |