| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluznn | Structured version Visualization version GIF version | ||
| Description: Membership in a positive upper set of integers implies membership in ℕ. (Contributed by JJ, 1-Oct-2018.) |
| Ref | Expression |
|---|---|
| eluznn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12778 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1 | uztrn2 12754 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ‘cfv 6482 1c1 11010 ℕcn 12128 ℤ≥cuz 12735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-z 12472 df-uz 12736 |
| This theorem is referenced by: elfzo1 13615 expmulnbnd 14142 bcval5 14225 isercolllem1 15572 isercoll 15575 o1fsum 15720 climcndslem1 15756 climcndslem2 15757 climcnds 15758 mertenslem2 15792 rpnnen2lem6 16128 rpnnen2lem7 16129 rpnnen2lem9 16131 rpnnen2lem11 16133 pcmpt2 16805 pcmptdvds 16806 prmreclem4 16831 prmreclem5 16832 prmreclem6 16833 vdwnnlem2 16908 2expltfac 17004 1stcelcls 23346 lmnn 25161 cmetcaulem 25186 causs 25196 caubl 25206 caublcls 25207 ovolunlem1a 25395 volsuplem 25454 uniioombllem3 25484 mbfi1fseqlem6 25619 aaliou3lem2 26249 birthdaylem2 26860 lgamgulmlem4 26940 lgamcvg2 26963 chtub 27121 bclbnd 27189 bposlem3 27195 bposlem4 27196 bposlem5 27197 bposlem6 27198 lgsdilem2 27242 chebbnd1lem1 27378 chebbnd1lem2 27379 chebbnd1lem3 27380 dchrisumlema 27397 dchrisumlem2 27399 dchrisumlem3 27400 dchrisum0lem1b 27424 dchrisum0lem1 27425 pntrsumbnd2 27476 pntpbnd1 27495 pntpbnd2 27496 pntlemh 27508 pntlemq 27510 pntlemr 27511 pntlemj 27512 pntlemf 27514 minvecolem3 30820 minvecolem4 30824 h2hcau 30923 h2hlm 30924 chscllem2 31582 sinccvglem 35645 lmclim2 37738 geomcau 37739 heibor1lem 37789 rrncmslem 37812 aks4d1p1 42049 fimgmcyc 42507 divcnvg 45608 stoweidlem7 45988 stirlinglem12 46066 fourierdlem103 46190 fourierdlem104 46191 |
| Copyright terms: Public domain | W3C validator |