| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluznn | Structured version Visualization version GIF version | ||
| Description: Membership in a positive upper set of integers implies membership in ℕ. (Contributed by JJ, 1-Oct-2018.) |
| Ref | Expression |
|---|---|
| eluznn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12900 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1 | uztrn2 12876 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ‘cfv 6536 1c1 11135 ℕcn 12245 ℤ≥cuz 12857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-z 12594 df-uz 12858 |
| This theorem is referenced by: elfzo1 13734 expmulnbnd 14258 bcval5 14341 isercolllem1 15686 isercoll 15689 o1fsum 15834 climcndslem1 15870 climcndslem2 15871 climcnds 15872 mertenslem2 15906 rpnnen2lem6 16242 rpnnen2lem7 16243 rpnnen2lem9 16245 rpnnen2lem11 16247 pcmpt2 16918 pcmptdvds 16919 prmreclem4 16944 prmreclem5 16945 prmreclem6 16946 vdwnnlem2 17021 2expltfac 17117 1stcelcls 23404 lmnn 25220 cmetcaulem 25245 causs 25255 caubl 25265 caublcls 25266 ovolunlem1a 25454 volsuplem 25513 uniioombllem3 25543 mbfi1fseqlem6 25678 aaliou3lem2 26308 birthdaylem2 26919 lgamgulmlem4 26999 lgamcvg2 27022 chtub 27180 bclbnd 27248 bposlem3 27254 bposlem4 27255 bposlem5 27256 bposlem6 27257 lgsdilem2 27301 chebbnd1lem1 27437 chebbnd1lem2 27438 chebbnd1lem3 27439 dchrisumlema 27456 dchrisumlem2 27458 dchrisumlem3 27459 dchrisum0lem1b 27483 dchrisum0lem1 27484 pntrsumbnd2 27535 pntpbnd1 27554 pntpbnd2 27555 pntlemh 27567 pntlemq 27569 pntlemr 27570 pntlemj 27571 pntlemf 27573 minvecolem3 30862 minvecolem4 30866 h2hcau 30965 h2hlm 30966 chscllem2 31624 sinccvglem 35699 lmclim2 37787 geomcau 37788 heibor1lem 37838 rrncmslem 37861 aks4d1p1 42094 fimgmcyc 42524 divcnvg 45623 stoweidlem7 46003 stirlinglem12 46081 fourierdlem103 46205 fourierdlem104 46206 |
| Copyright terms: Public domain | W3C validator |