MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluznn Structured version   Visualization version   GIF version

Theorem eluznn 12961
Description: Membership in a positive upper set of integers implies membership in . (Contributed by JJ, 1-Oct-2018.)
Assertion
Ref Expression
eluznn ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ)

Proof of Theorem eluznn
StepHypRef Expression
1 nnuz 12922 . 2 ℕ = (ℤ‘1)
21uztrn2 12898 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  cfv 6560  1c1 11157  cn 12267  cuz 12879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-z 12616  df-uz 12880
This theorem is referenced by:  elfzo1  13753  expmulnbnd  14275  bcval5  14358  isercolllem1  15702  isercoll  15705  o1fsum  15850  climcndslem1  15886  climcndslem2  15887  climcnds  15888  mertenslem2  15922  rpnnen2lem6  16256  rpnnen2lem7  16257  rpnnen2lem9  16259  rpnnen2lem11  16261  pcmpt2  16932  pcmptdvds  16933  prmreclem4  16958  prmreclem5  16959  prmreclem6  16960  vdwnnlem2  17035  2expltfac  17131  1stcelcls  23470  lmnn  25298  cmetcaulem  25323  causs  25333  caubl  25343  caublcls  25344  ovolunlem1a  25532  volsuplem  25591  uniioombllem3  25621  mbfi1fseqlem6  25756  aaliou3lem2  26386  birthdaylem2  26996  lgamgulmlem4  27076  lgamcvg2  27099  chtub  27257  bclbnd  27325  bposlem3  27331  bposlem4  27332  bposlem5  27333  bposlem6  27334  lgsdilem2  27378  chebbnd1lem1  27514  chebbnd1lem2  27515  chebbnd1lem3  27516  dchrisumlema  27533  dchrisumlem2  27535  dchrisumlem3  27536  dchrisum0lem1b  27560  dchrisum0lem1  27561  pntrsumbnd2  27612  pntpbnd1  27631  pntpbnd2  27632  pntlemh  27644  pntlemq  27646  pntlemr  27647  pntlemj  27648  pntlemf  27650  minvecolem3  30896  minvecolem4  30900  h2hcau  30999  h2hlm  31000  chscllem2  31658  sinccvglem  35678  lmclim2  37766  geomcau  37767  heibor1lem  37817  rrncmslem  37840  aks4d1p1  42078  fimgmcyc  42549  divcnvg  45647  stoweidlem7  46027  stirlinglem12  46105  fourierdlem103  46229  fourierdlem104  46230
  Copyright terms: Public domain W3C validator