| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluznn | Structured version Visualization version GIF version | ||
| Description: Membership in a positive upper set of integers implies membership in ℕ. (Contributed by JJ, 1-Oct-2018.) |
| Ref | Expression |
|---|---|
| eluznn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12812 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1 | uztrn2 12788 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ‘cfv 6499 1c1 11045 ℕcn 12162 ℤ≥cuz 12769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-z 12506 df-uz 12770 |
| This theorem is referenced by: elfzo1 13649 expmulnbnd 14176 bcval5 14259 isercolllem1 15607 isercoll 15610 o1fsum 15755 climcndslem1 15791 climcndslem2 15792 climcnds 15793 mertenslem2 15827 rpnnen2lem6 16163 rpnnen2lem7 16164 rpnnen2lem9 16166 rpnnen2lem11 16168 pcmpt2 16840 pcmptdvds 16841 prmreclem4 16866 prmreclem5 16867 prmreclem6 16868 vdwnnlem2 16943 2expltfac 17039 1stcelcls 23381 lmnn 25196 cmetcaulem 25221 causs 25231 caubl 25241 caublcls 25242 ovolunlem1a 25430 volsuplem 25489 uniioombllem3 25519 mbfi1fseqlem6 25654 aaliou3lem2 26284 birthdaylem2 26895 lgamgulmlem4 26975 lgamcvg2 26998 chtub 27156 bclbnd 27224 bposlem3 27230 bposlem4 27231 bposlem5 27232 bposlem6 27233 lgsdilem2 27277 chebbnd1lem1 27413 chebbnd1lem2 27414 chebbnd1lem3 27415 dchrisumlema 27432 dchrisumlem2 27434 dchrisumlem3 27435 dchrisum0lem1b 27459 dchrisum0lem1 27460 pntrsumbnd2 27511 pntpbnd1 27530 pntpbnd2 27531 pntlemh 27543 pntlemq 27545 pntlemr 27546 pntlemj 27547 pntlemf 27549 minvecolem3 30855 minvecolem4 30859 h2hcau 30958 h2hlm 30959 chscllem2 31617 sinccvglem 35652 lmclim2 37745 geomcau 37746 heibor1lem 37796 rrncmslem 37819 aks4d1p1 42057 fimgmcyc 42515 divcnvg 45618 stoweidlem7 45998 stirlinglem12 46076 fourierdlem103 46200 fourierdlem104 46201 |
| Copyright terms: Public domain | W3C validator |