MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdeglt Structured version   Visualization version   GIF version

Theorem mdeglt 25977
Description: If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
mdeglt.f (𝜑𝐹𝐵)
medglt.x (𝜑𝑋𝐴)
mdeglt.lt (𝜑 → (𝐷𝐹) < (𝐻𝑋))
Assertion
Ref Expression
mdeglt (𝜑 → (𝐹𝑋) = 0 )
Distinct variable groups:   𝐴,   𝑚,𝐼   0 ,   ,𝐼,𝑚
Allowed substitution hints:   𝜑(,𝑚)   𝐴(𝑚)   𝐵(,𝑚)   𝐷(,𝑚)   𝑃(,𝑚)   𝑅(,𝑚)   𝐹(,𝑚)   𝐻(,𝑚)   𝑋(,𝑚)   0 (𝑚)

Proof of Theorem mdeglt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mdeglt.lt . 2 (𝜑 → (𝐷𝐹) < (𝐻𝑋))
2 fveq2 6861 . . . . 5 (𝑥 = 𝑋 → (𝐻𝑥) = (𝐻𝑋))
32breq2d 5122 . . . 4 (𝑥 = 𝑋 → ((𝐷𝐹) < (𝐻𝑥) ↔ (𝐷𝐹) < (𝐻𝑋)))
4 fveqeq2 6870 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥) = 0 ↔ (𝐹𝑋) = 0 ))
53, 4imbi12d 344 . . 3 (𝑥 = 𝑋 → (((𝐷𝐹) < (𝐻𝑥) → (𝐹𝑥) = 0 ) ↔ ((𝐷𝐹) < (𝐻𝑋) → (𝐹𝑋) = 0 )))
6 mdeglt.f . . . . . . 7 (𝜑𝐹𝐵)
7 mdegval.d . . . . . . . 8 𝐷 = (𝐼 mDeg 𝑅)
8 mdegval.p . . . . . . . 8 𝑃 = (𝐼 mPoly 𝑅)
9 mdegval.b . . . . . . . 8 𝐵 = (Base‘𝑃)
10 mdegval.z . . . . . . . 8 0 = (0g𝑅)
11 mdegval.a . . . . . . . 8 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
12 mdegval.h . . . . . . . 8 𝐻 = (𝐴 ↦ (ℂfld Σg ))
137, 8, 9, 10, 11, 12mdegval 25975 . . . . . . 7 (𝐹𝐵 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
146, 13syl 17 . . . . . 6 (𝜑 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
15 imassrn 6045 . . . . . . . 8 (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻
1611, 12tdeglem1 25970 . . . . . . . . . 10 𝐻:𝐴⟶ℕ0
17 frn 6698 . . . . . . . . . 10 (𝐻:𝐴⟶ℕ0 → ran 𝐻 ⊆ ℕ0)
1816, 17mp1i 13 . . . . . . . . 9 (𝜑 → ran 𝐻 ⊆ ℕ0)
19 nn0ssre 12453 . . . . . . . . . 10 0 ⊆ ℝ
20 ressxr 11225 . . . . . . . . . 10 ℝ ⊆ ℝ*
2119, 20sstri 3959 . . . . . . . . 9 0 ⊆ ℝ*
2218, 21sstrdi 3962 . . . . . . . 8 (𝜑 → ran 𝐻 ⊆ ℝ*)
2315, 22sstrid 3961 . . . . . . 7 (𝜑 → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)
24 supxrcl 13282 . . . . . . 7 ((𝐻 “ (𝐹 supp 0 )) ⊆ ℝ* → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ ℝ*)
2523, 24syl 17 . . . . . 6 (𝜑 → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ ℝ*)
2614, 25eqeltrd 2829 . . . . 5 (𝜑 → (𝐷𝐹) ∈ ℝ*)
2726xrleidd 13119 . . . 4 (𝜑 → (𝐷𝐹) ≤ (𝐷𝐹))
287, 8, 9, 10, 11, 12mdegleb 25976 . . . . 5 ((𝐹𝐵 ∧ (𝐷𝐹) ∈ ℝ*) → ((𝐷𝐹) ≤ (𝐷𝐹) ↔ ∀𝑥𝐴 ((𝐷𝐹) < (𝐻𝑥) → (𝐹𝑥) = 0 )))
296, 26, 28syl2anc 584 . . . 4 (𝜑 → ((𝐷𝐹) ≤ (𝐷𝐹) ↔ ∀𝑥𝐴 ((𝐷𝐹) < (𝐻𝑥) → (𝐹𝑥) = 0 )))
3027, 29mpbid 232 . . 3 (𝜑 → ∀𝑥𝐴 ((𝐷𝐹) < (𝐻𝑥) → (𝐹𝑥) = 0 ))
31 medglt.x . . 3 (𝜑𝑋𝐴)
325, 30, 31rspcdva 3592 . 2 (𝜑 → ((𝐷𝐹) < (𝐻𝑋) → (𝐹𝑋) = 0 ))
331, 32mpd 15 1 (𝜑 → (𝐹𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3045  {crab 3408  wss 3917   class class class wbr 5110  cmpt 5191  ccnv 5640  ran crn 5642  cima 5644  wf 6510  cfv 6514  (class class class)co 7390   supp csupp 8142  m cmap 8802  Fincfn 8921  supcsup 9398  cr 11074  *cxr 11214   < clt 11215  cle 11216  cn 12193  0cn0 12449  Basecbs 17186  0gc0g 17409   Σg cgsu 17410  fldccnfld 21271   mPoly cmpl 21822   mDeg cmdg 25965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-ur 20098  df-ring 20151  df-cring 20152  df-cnfld 21272  df-psr 21825  df-mpl 21827  df-mdeg 25967
This theorem is referenced by:  mdegaddle  25986  mdegvscale  25987  mdegmullem  25990
  Copyright terms: Public domain W3C validator