![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdeglt | Structured version Visualization version GIF version |
Description: If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
Ref | Expression |
---|---|
mdegval.d | β’ π· = (πΌ mDeg π ) |
mdegval.p | β’ π = (πΌ mPoly π ) |
mdegval.b | β’ π΅ = (Baseβπ) |
mdegval.z | β’ 0 = (0gβπ ) |
mdegval.a | β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} |
mdegval.h | β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) |
mdeglt.f | β’ (π β πΉ β π΅) |
medglt.x | β’ (π β π β π΄) |
mdeglt.lt | β’ (π β (π·βπΉ) < (π»βπ)) |
Ref | Expression |
---|---|
mdeglt | β’ (π β (πΉβπ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdeglt.lt | . 2 β’ (π β (π·βπΉ) < (π»βπ)) | |
2 | fveq2 6891 | . . . . 5 β’ (π₯ = π β (π»βπ₯) = (π»βπ)) | |
3 | 2 | breq2d 5154 | . . . 4 β’ (π₯ = π β ((π·βπΉ) < (π»βπ₯) β (π·βπΉ) < (π»βπ))) |
4 | fveqeq2 6900 | . . . 4 β’ (π₯ = π β ((πΉβπ₯) = 0 β (πΉβπ) = 0 )) | |
5 | 3, 4 | imbi12d 344 | . . 3 β’ (π₯ = π β (((π·βπΉ) < (π»βπ₯) β (πΉβπ₯) = 0 ) β ((π·βπΉ) < (π»βπ) β (πΉβπ) = 0 ))) |
6 | mdeglt.f | . . . . . . 7 β’ (π β πΉ β π΅) | |
7 | mdegval.d | . . . . . . . 8 β’ π· = (πΌ mDeg π ) | |
8 | mdegval.p | . . . . . . . 8 β’ π = (πΌ mPoly π ) | |
9 | mdegval.b | . . . . . . . 8 β’ π΅ = (Baseβπ) | |
10 | mdegval.z | . . . . . . . 8 β’ 0 = (0gβπ ) | |
11 | mdegval.a | . . . . . . . 8 β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} | |
12 | mdegval.h | . . . . . . . 8 β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) | |
13 | 7, 8, 9, 10, 11, 12 | mdegval 25992 | . . . . . . 7 β’ (πΉ β π΅ β (π·βπΉ) = sup((π» β (πΉ supp 0 )), β*, < )) |
14 | 6, 13 | syl 17 | . . . . . 6 β’ (π β (π·βπΉ) = sup((π» β (πΉ supp 0 )), β*, < )) |
15 | imassrn 6068 | . . . . . . . 8 β’ (π» β (πΉ supp 0 )) β ran π» | |
16 | 11, 12 | tdeglem1 25984 | . . . . . . . . . 10 β’ π»:π΄βΆβ0 |
17 | frn 6723 | . . . . . . . . . 10 β’ (π»:π΄βΆβ0 β ran π» β β0) | |
18 | 16, 17 | mp1i 13 | . . . . . . . . 9 β’ (π β ran π» β β0) |
19 | nn0ssre 12500 | . . . . . . . . . 10 β’ β0 β β | |
20 | ressxr 11282 | . . . . . . . . . 10 β’ β β β* | |
21 | 19, 20 | sstri 3987 | . . . . . . . . 9 β’ β0 β β* |
22 | 18, 21 | sstrdi 3990 | . . . . . . . 8 β’ (π β ran π» β β*) |
23 | 15, 22 | sstrid 3989 | . . . . . . 7 β’ (π β (π» β (πΉ supp 0 )) β β*) |
24 | supxrcl 13320 | . . . . . . 7 β’ ((π» β (πΉ supp 0 )) β β* β sup((π» β (πΉ supp 0 )), β*, < ) β β*) | |
25 | 23, 24 | syl 17 | . . . . . 6 β’ (π β sup((π» β (πΉ supp 0 )), β*, < ) β β*) |
26 | 14, 25 | eqeltrd 2828 | . . . . 5 β’ (π β (π·βπΉ) β β*) |
27 | 26 | xrleidd 13157 | . . . 4 β’ (π β (π·βπΉ) β€ (π·βπΉ)) |
28 | 7, 8, 9, 10, 11, 12 | mdegleb 25993 | . . . . 5 β’ ((πΉ β π΅ β§ (π·βπΉ) β β*) β ((π·βπΉ) β€ (π·βπΉ) β βπ₯ β π΄ ((π·βπΉ) < (π»βπ₯) β (πΉβπ₯) = 0 ))) |
29 | 6, 26, 28 | syl2anc 583 | . . . 4 β’ (π β ((π·βπΉ) β€ (π·βπΉ) β βπ₯ β π΄ ((π·βπΉ) < (π»βπ₯) β (πΉβπ₯) = 0 ))) |
30 | 27, 29 | mpbid 231 | . . 3 β’ (π β βπ₯ β π΄ ((π·βπΉ) < (π»βπ₯) β (πΉβπ₯) = 0 )) |
31 | medglt.x | . . 3 β’ (π β π β π΄) | |
32 | 5, 30, 31 | rspcdva 3608 | . 2 β’ (π β ((π·βπΉ) < (π»βπ) β (πΉβπ) = 0 )) |
33 | 1, 32 | mpd 15 | 1 β’ (π β (πΉβπ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1534 β wcel 2099 βwral 3056 {crab 3427 β wss 3944 class class class wbr 5142 β¦ cmpt 5225 β‘ccnv 5671 ran crn 5673 β cima 5675 βΆwf 6538 βcfv 6542 (class class class)co 7414 supp csupp 8159 βm cmap 8838 Fincfn 8957 supcsup 9457 βcr 11131 β*cxr 11271 < clt 11272 β€ cle 11273 βcn 12236 β0cn0 12496 Basecbs 17173 0gc0g 17414 Ξ£g cgsu 17415 βfldccnfld 21272 mPoly cmpl 21832 mDeg cmdg 25979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-sup 9459 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-fzo 13654 df-seq 13993 df-hash 14316 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17416 df-gsum 17417 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-grp 18886 df-minusg 18887 df-cntz 19261 df-cmn 19730 df-abl 19731 df-mgp 20068 df-ur 20115 df-ring 20168 df-cring 20169 df-cnfld 21273 df-psr 21835 df-mpl 21837 df-mdeg 25981 |
This theorem is referenced by: mdegaddle 26003 mdegvscale 26004 mdegmullem 26007 |
Copyright terms: Public domain | W3C validator |