| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdeglt | Structured version Visualization version GIF version | ||
| Description: If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| mdegval.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
| mdegval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mdegval.b | ⊢ 𝐵 = (Base‘𝑃) |
| mdegval.z | ⊢ 0 = (0g‘𝑅) |
| mdegval.a | ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} |
| mdegval.h | ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) |
| mdeglt.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| medglt.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| mdeglt.lt | ⊢ (𝜑 → (𝐷‘𝐹) < (𝐻‘𝑋)) |
| Ref | Expression |
|---|---|
| mdeglt | ⊢ (𝜑 → (𝐹‘𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdeglt.lt | . 2 ⊢ (𝜑 → (𝐷‘𝐹) < (𝐻‘𝑋)) | |
| 2 | fveq2 6840 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐻‘𝑥) = (𝐻‘𝑋)) | |
| 3 | 2 | breq2d 5114 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐷‘𝐹) < (𝐻‘𝑥) ↔ (𝐷‘𝐹) < (𝐻‘𝑋))) |
| 4 | fveqeq2 6849 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 0 ↔ (𝐹‘𝑋) = 0 )) | |
| 5 | 3, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑋 → (((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ) ↔ ((𝐷‘𝐹) < (𝐻‘𝑋) → (𝐹‘𝑋) = 0 ))) |
| 6 | mdeglt.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 7 | mdegval.d | . . . . . . . 8 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
| 8 | mdegval.p | . . . . . . . 8 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 9 | mdegval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑃) | |
| 10 | mdegval.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 11 | mdegval.a | . . . . . . . 8 ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
| 12 | mdegval.h | . . . . . . . 8 ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) | |
| 13 | 7, 8, 9, 10, 11, 12 | mdegval 25944 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
| 14 | 6, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
| 15 | imassrn 6031 | . . . . . . . 8 ⊢ (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻 | |
| 16 | 11, 12 | tdeglem1 25939 | . . . . . . . . . 10 ⊢ 𝐻:𝐴⟶ℕ0 |
| 17 | frn 6677 | . . . . . . . . . 10 ⊢ (𝐻:𝐴⟶ℕ0 → ran 𝐻 ⊆ ℕ0) | |
| 18 | 16, 17 | mp1i 13 | . . . . . . . . 9 ⊢ (𝜑 → ran 𝐻 ⊆ ℕ0) |
| 19 | nn0ssre 12422 | . . . . . . . . . 10 ⊢ ℕ0 ⊆ ℝ | |
| 20 | ressxr 11194 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
| 21 | 19, 20 | sstri 3953 | . . . . . . . . 9 ⊢ ℕ0 ⊆ ℝ* |
| 22 | 18, 21 | sstrdi 3956 | . . . . . . . 8 ⊢ (𝜑 → ran 𝐻 ⊆ ℝ*) |
| 23 | 15, 22 | sstrid 3955 | . . . . . . 7 ⊢ (𝜑 → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*) |
| 24 | supxrcl 13251 | . . . . . . 7 ⊢ ((𝐻 “ (𝐹 supp 0 )) ⊆ ℝ* → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ ℝ*) | |
| 25 | 23, 24 | syl 17 | . . . . . 6 ⊢ (𝜑 → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ ℝ*) |
| 26 | 14, 25 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ*) |
| 27 | 26 | xrleidd 13088 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐹) ≤ (𝐷‘𝐹)) |
| 28 | 7, 8, 9, 10, 11, 12 | mdegleb 25945 | . . . . 5 ⊢ ((𝐹 ∈ 𝐵 ∧ (𝐷‘𝐹) ∈ ℝ*) → ((𝐷‘𝐹) ≤ (𝐷‘𝐹) ↔ ∀𝑥 ∈ 𝐴 ((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) |
| 29 | 6, 26, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐹) ≤ (𝐷‘𝐹) ↔ ∀𝑥 ∈ 𝐴 ((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) |
| 30 | 27, 29 | mpbid 232 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 )) |
| 31 | medglt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 32 | 5, 30, 31 | rspcdva 3586 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) < (𝐻‘𝑋) → (𝐹‘𝑋) = 0 )) |
| 33 | 1, 32 | mpd 15 | 1 ⊢ (𝜑 → (𝐹‘𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3402 ⊆ wss 3911 class class class wbr 5102 ↦ cmpt 5183 ◡ccnv 5630 ran crn 5632 “ cima 5634 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 supp csupp 8116 ↑m cmap 8776 Fincfn 8895 supcsup 9367 ℝcr 11043 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 ℕcn 12162 ℕ0cn0 12418 Basecbs 17155 0gc0g 17378 Σg cgsu 17379 ℂfldccnfld 21240 mPoly cmpl 21791 mDeg cmdg 25934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-gsum 17381 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-ur 20067 df-ring 20120 df-cring 20121 df-cnfld 21241 df-psr 21794 df-mpl 21796 df-mdeg 25936 |
| This theorem is referenced by: mdegaddle 25955 mdegvscale 25956 mdegmullem 25959 |
| Copyright terms: Public domain | W3C validator |