Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mdeglt | Structured version Visualization version GIF version |
Description: If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
Ref | Expression |
---|---|
mdegval.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
mdegval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mdegval.b | ⊢ 𝐵 = (Base‘𝑃) |
mdegval.z | ⊢ 0 = (0g‘𝑅) |
mdegval.a | ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} |
mdegval.h | ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) |
mdeglt.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
medglt.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
mdeglt.lt | ⊢ (𝜑 → (𝐷‘𝐹) < (𝐻‘𝑋)) |
Ref | Expression |
---|---|
mdeglt | ⊢ (𝜑 → (𝐹‘𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdeglt.lt | . 2 ⊢ (𝜑 → (𝐷‘𝐹) < (𝐻‘𝑋)) | |
2 | fveq2 6819 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐻‘𝑥) = (𝐻‘𝑋)) | |
3 | 2 | breq2d 5101 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐷‘𝐹) < (𝐻‘𝑥) ↔ (𝐷‘𝐹) < (𝐻‘𝑋))) |
4 | fveqeq2 6828 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 0 ↔ (𝐹‘𝑋) = 0 )) | |
5 | 3, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑋 → (((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ) ↔ ((𝐷‘𝐹) < (𝐻‘𝑋) → (𝐹‘𝑋) = 0 ))) |
6 | mdeglt.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
7 | mdegval.d | . . . . . . . 8 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
8 | mdegval.p | . . . . . . . 8 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
9 | mdegval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑃) | |
10 | mdegval.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
11 | mdegval.a | . . . . . . . 8 ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
12 | mdegval.h | . . . . . . . 8 ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) | |
13 | 7, 8, 9, 10, 11, 12 | mdegval 25326 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
14 | 6, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
15 | imassrn 6004 | . . . . . . . 8 ⊢ (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻 | |
16 | 11, 12 | tdeglem1 25318 | . . . . . . . . . 10 ⊢ 𝐻:𝐴⟶ℕ0 |
17 | frn 6652 | . . . . . . . . . 10 ⊢ (𝐻:𝐴⟶ℕ0 → ran 𝐻 ⊆ ℕ0) | |
18 | 16, 17 | mp1i 13 | . . . . . . . . 9 ⊢ (𝜑 → ran 𝐻 ⊆ ℕ0) |
19 | nn0ssre 12330 | . . . . . . . . . 10 ⊢ ℕ0 ⊆ ℝ | |
20 | ressxr 11112 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
21 | 19, 20 | sstri 3940 | . . . . . . . . 9 ⊢ ℕ0 ⊆ ℝ* |
22 | 18, 21 | sstrdi 3943 | . . . . . . . 8 ⊢ (𝜑 → ran 𝐻 ⊆ ℝ*) |
23 | 15, 22 | sstrid 3942 | . . . . . . 7 ⊢ (𝜑 → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*) |
24 | supxrcl 13142 | . . . . . . 7 ⊢ ((𝐻 “ (𝐹 supp 0 )) ⊆ ℝ* → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ ℝ*) | |
25 | 23, 24 | syl 17 | . . . . . 6 ⊢ (𝜑 → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ ℝ*) |
26 | 14, 25 | eqeltrd 2837 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ*) |
27 | 26 | xrleidd 12979 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐹) ≤ (𝐷‘𝐹)) |
28 | 7, 8, 9, 10, 11, 12 | mdegleb 25327 | . . . . 5 ⊢ ((𝐹 ∈ 𝐵 ∧ (𝐷‘𝐹) ∈ ℝ*) → ((𝐷‘𝐹) ≤ (𝐷‘𝐹) ↔ ∀𝑥 ∈ 𝐴 ((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) |
29 | 6, 26, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐹) ≤ (𝐷‘𝐹) ↔ ∀𝑥 ∈ 𝐴 ((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) |
30 | 27, 29 | mpbid 231 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 )) |
31 | medglt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
32 | 5, 30, 31 | rspcdva 3571 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) < (𝐻‘𝑋) → (𝐹‘𝑋) = 0 )) |
33 | 1, 32 | mpd 15 | 1 ⊢ (𝜑 → (𝐹‘𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∀wral 3061 {crab 3403 ⊆ wss 3897 class class class wbr 5089 ↦ cmpt 5172 ◡ccnv 5613 ran crn 5615 “ cima 5617 ⟶wf 6469 ‘cfv 6473 (class class class)co 7329 supp csupp 8039 ↑m cmap 8678 Fincfn 8796 supcsup 9289 ℝcr 10963 ℝ*cxr 11101 < clt 11102 ≤ cle 11103 ℕcn 12066 ℕ0cn0 12326 Basecbs 17001 0gc0g 17239 Σg cgsu 17240 ℂfldccnfld 20695 mPoly cmpl 21207 mDeg cmdg 25313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 ax-addf 11043 ax-mulf 11044 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-of 7587 df-om 7773 df-1st 7891 df-2nd 7892 df-supp 8040 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-fsupp 9219 df-sup 9291 df-oi 9359 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-dec 12531 df-uz 12676 df-fz 13333 df-fzo 13476 df-seq 13815 df-hash 14138 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-mulr 17065 df-starv 17066 df-sca 17067 df-vsca 17068 df-tset 17070 df-ple 17071 df-ds 17073 df-unif 17074 df-0g 17241 df-gsum 17242 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-submnd 18520 df-grp 18668 df-minusg 18669 df-cntz 19011 df-cmn 19475 df-abl 19476 df-mgp 19808 df-ur 19825 df-ring 19872 df-cring 19873 df-cnfld 20696 df-psr 21210 df-mpl 21212 df-mdeg 25315 |
This theorem is referenced by: mdegaddle 25337 mdegvscale 25338 mdegmullem 25341 |
Copyright terms: Public domain | W3C validator |