| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdeglt | Structured version Visualization version GIF version | ||
| Description: If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| mdegval.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
| mdegval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mdegval.b | ⊢ 𝐵 = (Base‘𝑃) |
| mdegval.z | ⊢ 0 = (0g‘𝑅) |
| mdegval.a | ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} |
| mdegval.h | ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) |
| mdeglt.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| medglt.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| mdeglt.lt | ⊢ (𝜑 → (𝐷‘𝐹) < (𝐻‘𝑋)) |
| Ref | Expression |
|---|---|
| mdeglt | ⊢ (𝜑 → (𝐹‘𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdeglt.lt | . 2 ⊢ (𝜑 → (𝐷‘𝐹) < (𝐻‘𝑋)) | |
| 2 | fveq2 6858 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐻‘𝑥) = (𝐻‘𝑋)) | |
| 3 | 2 | breq2d 5119 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐷‘𝐹) < (𝐻‘𝑥) ↔ (𝐷‘𝐹) < (𝐻‘𝑋))) |
| 4 | fveqeq2 6867 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 0 ↔ (𝐹‘𝑋) = 0 )) | |
| 5 | 3, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑋 → (((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ) ↔ ((𝐷‘𝐹) < (𝐻‘𝑋) → (𝐹‘𝑋) = 0 ))) |
| 6 | mdeglt.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 7 | mdegval.d | . . . . . . . 8 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
| 8 | mdegval.p | . . . . . . . 8 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 9 | mdegval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑃) | |
| 10 | mdegval.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 11 | mdegval.a | . . . . . . . 8 ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
| 12 | mdegval.h | . . . . . . . 8 ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) | |
| 13 | 7, 8, 9, 10, 11, 12 | mdegval 25968 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
| 14 | 6, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
| 15 | imassrn 6042 | . . . . . . . 8 ⊢ (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻 | |
| 16 | 11, 12 | tdeglem1 25963 | . . . . . . . . . 10 ⊢ 𝐻:𝐴⟶ℕ0 |
| 17 | frn 6695 | . . . . . . . . . 10 ⊢ (𝐻:𝐴⟶ℕ0 → ran 𝐻 ⊆ ℕ0) | |
| 18 | 16, 17 | mp1i 13 | . . . . . . . . 9 ⊢ (𝜑 → ran 𝐻 ⊆ ℕ0) |
| 19 | nn0ssre 12446 | . . . . . . . . . 10 ⊢ ℕ0 ⊆ ℝ | |
| 20 | ressxr 11218 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
| 21 | 19, 20 | sstri 3956 | . . . . . . . . 9 ⊢ ℕ0 ⊆ ℝ* |
| 22 | 18, 21 | sstrdi 3959 | . . . . . . . 8 ⊢ (𝜑 → ran 𝐻 ⊆ ℝ*) |
| 23 | 15, 22 | sstrid 3958 | . . . . . . 7 ⊢ (𝜑 → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*) |
| 24 | supxrcl 13275 | . . . . . . 7 ⊢ ((𝐻 “ (𝐹 supp 0 )) ⊆ ℝ* → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ ℝ*) | |
| 25 | 23, 24 | syl 17 | . . . . . 6 ⊢ (𝜑 → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ ℝ*) |
| 26 | 14, 25 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ*) |
| 27 | 26 | xrleidd 13112 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐹) ≤ (𝐷‘𝐹)) |
| 28 | 7, 8, 9, 10, 11, 12 | mdegleb 25969 | . . . . 5 ⊢ ((𝐹 ∈ 𝐵 ∧ (𝐷‘𝐹) ∈ ℝ*) → ((𝐷‘𝐹) ≤ (𝐷‘𝐹) ↔ ∀𝑥 ∈ 𝐴 ((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) |
| 29 | 6, 26, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐹) ≤ (𝐷‘𝐹) ↔ ∀𝑥 ∈ 𝐴 ((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) |
| 30 | 27, 29 | mpbid 232 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 )) |
| 31 | medglt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 32 | 5, 30, 31 | rspcdva 3589 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) < (𝐻‘𝑋) → (𝐹‘𝑋) = 0 )) |
| 33 | 1, 32 | mpd 15 | 1 ⊢ (𝜑 → (𝐹‘𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 ◡ccnv 5637 ran crn 5639 “ cima 5641 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 ↑m cmap 8799 Fincfn 8918 supcsup 9391 ℝcr 11067 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 0gc0g 17402 Σg cgsu 17403 ℂfldccnfld 21264 mPoly cmpl 21815 mDeg cmdg 25958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-gsum 17405 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-ur 20091 df-ring 20144 df-cring 20145 df-cnfld 21265 df-psr 21818 df-mpl 21820 df-mdeg 25960 |
| This theorem is referenced by: mdegaddle 25979 mdegvscale 25980 mdegmullem 25983 |
| Copyright terms: Public domain | W3C validator |