![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdeglt | Structured version Visualization version GIF version |
Description: If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
Ref | Expression |
---|---|
mdegval.d | β’ π· = (πΌ mDeg π ) |
mdegval.p | β’ π = (πΌ mPoly π ) |
mdegval.b | β’ π΅ = (Baseβπ) |
mdegval.z | β’ 0 = (0gβπ ) |
mdegval.a | β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} |
mdegval.h | β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) |
mdeglt.f | β’ (π β πΉ β π΅) |
medglt.x | β’ (π β π β π΄) |
mdeglt.lt | β’ (π β (π·βπΉ) < (π»βπ)) |
Ref | Expression |
---|---|
mdeglt | β’ (π β (πΉβπ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdeglt.lt | . 2 β’ (π β (π·βπΉ) < (π»βπ)) | |
2 | fveq2 6881 | . . . . 5 β’ (π₯ = π β (π»βπ₯) = (π»βπ)) | |
3 | 2 | breq2d 5150 | . . . 4 β’ (π₯ = π β ((π·βπΉ) < (π»βπ₯) β (π·βπΉ) < (π»βπ))) |
4 | fveqeq2 6890 | . . . 4 β’ (π₯ = π β ((πΉβπ₯) = 0 β (πΉβπ) = 0 )) | |
5 | 3, 4 | imbi12d 344 | . . 3 β’ (π₯ = π β (((π·βπΉ) < (π»βπ₯) β (πΉβπ₯) = 0 ) β ((π·βπΉ) < (π»βπ) β (πΉβπ) = 0 ))) |
6 | mdeglt.f | . . . . . . 7 β’ (π β πΉ β π΅) | |
7 | mdegval.d | . . . . . . . 8 β’ π· = (πΌ mDeg π ) | |
8 | mdegval.p | . . . . . . . 8 β’ π = (πΌ mPoly π ) | |
9 | mdegval.b | . . . . . . . 8 β’ π΅ = (Baseβπ) | |
10 | mdegval.z | . . . . . . . 8 β’ 0 = (0gβπ ) | |
11 | mdegval.a | . . . . . . . 8 β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} | |
12 | mdegval.h | . . . . . . . 8 β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) | |
13 | 7, 8, 9, 10, 11, 12 | mdegval 25921 | . . . . . . 7 β’ (πΉ β π΅ β (π·βπΉ) = sup((π» β (πΉ supp 0 )), β*, < )) |
14 | 6, 13 | syl 17 | . . . . . 6 β’ (π β (π·βπΉ) = sup((π» β (πΉ supp 0 )), β*, < )) |
15 | imassrn 6060 | . . . . . . . 8 β’ (π» β (πΉ supp 0 )) β ran π» | |
16 | 11, 12 | tdeglem1 25913 | . . . . . . . . . 10 β’ π»:π΄βΆβ0 |
17 | frn 6714 | . . . . . . . . . 10 β’ (π»:π΄βΆβ0 β ran π» β β0) | |
18 | 16, 17 | mp1i 13 | . . . . . . . . 9 β’ (π β ran π» β β0) |
19 | nn0ssre 12473 | . . . . . . . . . 10 β’ β0 β β | |
20 | ressxr 11255 | . . . . . . . . . 10 β’ β β β* | |
21 | 19, 20 | sstri 3983 | . . . . . . . . 9 β’ β0 β β* |
22 | 18, 21 | sstrdi 3986 | . . . . . . . 8 β’ (π β ran π» β β*) |
23 | 15, 22 | sstrid 3985 | . . . . . . 7 β’ (π β (π» β (πΉ supp 0 )) β β*) |
24 | supxrcl 13291 | . . . . . . 7 β’ ((π» β (πΉ supp 0 )) β β* β sup((π» β (πΉ supp 0 )), β*, < ) β β*) | |
25 | 23, 24 | syl 17 | . . . . . 6 β’ (π β sup((π» β (πΉ supp 0 )), β*, < ) β β*) |
26 | 14, 25 | eqeltrd 2825 | . . . . 5 β’ (π β (π·βπΉ) β β*) |
27 | 26 | xrleidd 13128 | . . . 4 β’ (π β (π·βπΉ) β€ (π·βπΉ)) |
28 | 7, 8, 9, 10, 11, 12 | mdegleb 25922 | . . . . 5 β’ ((πΉ β π΅ β§ (π·βπΉ) β β*) β ((π·βπΉ) β€ (π·βπΉ) β βπ₯ β π΄ ((π·βπΉ) < (π»βπ₯) β (πΉβπ₯) = 0 ))) |
29 | 6, 26, 28 | syl2anc 583 | . . . 4 β’ (π β ((π·βπΉ) β€ (π·βπΉ) β βπ₯ β π΄ ((π·βπΉ) < (π»βπ₯) β (πΉβπ₯) = 0 ))) |
30 | 27, 29 | mpbid 231 | . . 3 β’ (π β βπ₯ β π΄ ((π·βπΉ) < (π»βπ₯) β (πΉβπ₯) = 0 )) |
31 | medglt.x | . . 3 β’ (π β π β π΄) | |
32 | 5, 30, 31 | rspcdva 3605 | . 2 β’ (π β ((π·βπΉ) < (π»βπ) β (πΉβπ) = 0 )) |
33 | 1, 32 | mpd 15 | 1 β’ (π β (πΉβπ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 βwral 3053 {crab 3424 β wss 3940 class class class wbr 5138 β¦ cmpt 5221 β‘ccnv 5665 ran crn 5667 β cima 5669 βΆwf 6529 βcfv 6533 (class class class)co 7401 supp csupp 8140 βm cmap 8816 Fincfn 8935 supcsup 9431 βcr 11105 β*cxr 11244 < clt 11245 β€ cle 11246 βcn 12209 β0cn0 12469 Basecbs 17143 0gc0g 17384 Ξ£g cgsu 17385 βfldccnfld 21228 mPoly cmpl 21768 mDeg cmdg 25908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-fz 13482 df-fzo 13625 df-seq 13964 df-hash 14288 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-gsum 17387 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-submnd 18704 df-grp 18856 df-minusg 18857 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-ur 20077 df-ring 20130 df-cring 20131 df-cnfld 21229 df-psr 21771 df-mpl 21773 df-mdeg 25910 |
This theorem is referenced by: mdegaddle 25932 mdegvscale 25933 mdegmullem 25936 |
Copyright terms: Public domain | W3C validator |