| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdeglt | Structured version Visualization version GIF version | ||
| Description: If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| mdegval.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
| mdegval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mdegval.b | ⊢ 𝐵 = (Base‘𝑃) |
| mdegval.z | ⊢ 0 = (0g‘𝑅) |
| mdegval.a | ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} |
| mdegval.h | ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) |
| mdeglt.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| medglt.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| mdeglt.lt | ⊢ (𝜑 → (𝐷‘𝐹) < (𝐻‘𝑋)) |
| Ref | Expression |
|---|---|
| mdeglt | ⊢ (𝜑 → (𝐹‘𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdeglt.lt | . 2 ⊢ (𝜑 → (𝐷‘𝐹) < (𝐻‘𝑋)) | |
| 2 | fveq2 6861 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐻‘𝑥) = (𝐻‘𝑋)) | |
| 3 | 2 | breq2d 5122 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐷‘𝐹) < (𝐻‘𝑥) ↔ (𝐷‘𝐹) < (𝐻‘𝑋))) |
| 4 | fveqeq2 6870 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 0 ↔ (𝐹‘𝑋) = 0 )) | |
| 5 | 3, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑋 → (((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ) ↔ ((𝐷‘𝐹) < (𝐻‘𝑋) → (𝐹‘𝑋) = 0 ))) |
| 6 | mdeglt.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 7 | mdegval.d | . . . . . . . 8 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
| 8 | mdegval.p | . . . . . . . 8 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 9 | mdegval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑃) | |
| 10 | mdegval.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 11 | mdegval.a | . . . . . . . 8 ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
| 12 | mdegval.h | . . . . . . . 8 ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) | |
| 13 | 7, 8, 9, 10, 11, 12 | mdegval 25975 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
| 14 | 6, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
| 15 | imassrn 6045 | . . . . . . . 8 ⊢ (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻 | |
| 16 | 11, 12 | tdeglem1 25970 | . . . . . . . . . 10 ⊢ 𝐻:𝐴⟶ℕ0 |
| 17 | frn 6698 | . . . . . . . . . 10 ⊢ (𝐻:𝐴⟶ℕ0 → ran 𝐻 ⊆ ℕ0) | |
| 18 | 16, 17 | mp1i 13 | . . . . . . . . 9 ⊢ (𝜑 → ran 𝐻 ⊆ ℕ0) |
| 19 | nn0ssre 12453 | . . . . . . . . . 10 ⊢ ℕ0 ⊆ ℝ | |
| 20 | ressxr 11225 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
| 21 | 19, 20 | sstri 3959 | . . . . . . . . 9 ⊢ ℕ0 ⊆ ℝ* |
| 22 | 18, 21 | sstrdi 3962 | . . . . . . . 8 ⊢ (𝜑 → ran 𝐻 ⊆ ℝ*) |
| 23 | 15, 22 | sstrid 3961 | . . . . . . 7 ⊢ (𝜑 → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*) |
| 24 | supxrcl 13282 | . . . . . . 7 ⊢ ((𝐻 “ (𝐹 supp 0 )) ⊆ ℝ* → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ ℝ*) | |
| 25 | 23, 24 | syl 17 | . . . . . 6 ⊢ (𝜑 → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ ℝ*) |
| 26 | 14, 25 | eqeltrd 2829 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ*) |
| 27 | 26 | xrleidd 13119 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐹) ≤ (𝐷‘𝐹)) |
| 28 | 7, 8, 9, 10, 11, 12 | mdegleb 25976 | . . . . 5 ⊢ ((𝐹 ∈ 𝐵 ∧ (𝐷‘𝐹) ∈ ℝ*) → ((𝐷‘𝐹) ≤ (𝐷‘𝐹) ↔ ∀𝑥 ∈ 𝐴 ((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) |
| 29 | 6, 26, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐹) ≤ (𝐷‘𝐹) ↔ ∀𝑥 ∈ 𝐴 ((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) |
| 30 | 27, 29 | mpbid 232 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 )) |
| 31 | medglt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 32 | 5, 30, 31 | rspcdva 3592 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) < (𝐻‘𝑋) → (𝐹‘𝑋) = 0 )) |
| 33 | 1, 32 | mpd 15 | 1 ⊢ (𝜑 → (𝐹‘𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ⊆ wss 3917 class class class wbr 5110 ↦ cmpt 5191 ◡ccnv 5640 ran crn 5642 “ cima 5644 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 ↑m cmap 8802 Fincfn 8921 supcsup 9398 ℝcr 11074 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 ℕcn 12193 ℕ0cn0 12449 Basecbs 17186 0gc0g 17409 Σg cgsu 17410 ℂfldccnfld 21271 mPoly cmpl 21822 mDeg cmdg 25965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-gsum 17412 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-ur 20098 df-ring 20151 df-cring 20152 df-cnfld 21272 df-psr 21825 df-mpl 21827 df-mdeg 25967 |
| This theorem is referenced by: mdegaddle 25986 mdegvscale 25987 mdegmullem 25990 |
| Copyright terms: Public domain | W3C validator |