| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdeglt | Structured version Visualization version GIF version | ||
| Description: If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| mdegval.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
| mdegval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mdegval.b | ⊢ 𝐵 = (Base‘𝑃) |
| mdegval.z | ⊢ 0 = (0g‘𝑅) |
| mdegval.a | ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} |
| mdegval.h | ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) |
| mdeglt.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| medglt.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| mdeglt.lt | ⊢ (𝜑 → (𝐷‘𝐹) < (𝐻‘𝑋)) |
| Ref | Expression |
|---|---|
| mdeglt | ⊢ (𝜑 → (𝐹‘𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdeglt.lt | . 2 ⊢ (𝜑 → (𝐷‘𝐹) < (𝐻‘𝑋)) | |
| 2 | fveq2 6826 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐻‘𝑥) = (𝐻‘𝑋)) | |
| 3 | 2 | breq2d 5107 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐷‘𝐹) < (𝐻‘𝑥) ↔ (𝐷‘𝐹) < (𝐻‘𝑋))) |
| 4 | fveqeq2 6835 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 0 ↔ (𝐹‘𝑋) = 0 )) | |
| 5 | 3, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑋 → (((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ) ↔ ((𝐷‘𝐹) < (𝐻‘𝑋) → (𝐹‘𝑋) = 0 ))) |
| 6 | mdeglt.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 7 | mdegval.d | . . . . . . . 8 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
| 8 | mdegval.p | . . . . . . . 8 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 9 | mdegval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑃) | |
| 10 | mdegval.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 11 | mdegval.a | . . . . . . . 8 ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
| 12 | mdegval.h | . . . . . . . 8 ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) | |
| 13 | 7, 8, 9, 10, 11, 12 | mdegval 25984 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
| 14 | 6, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
| 15 | imassrn 6026 | . . . . . . . 8 ⊢ (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻 | |
| 16 | 11, 12 | tdeglem1 25979 | . . . . . . . . . 10 ⊢ 𝐻:𝐴⟶ℕ0 |
| 17 | frn 6663 | . . . . . . . . . 10 ⊢ (𝐻:𝐴⟶ℕ0 → ran 𝐻 ⊆ ℕ0) | |
| 18 | 16, 17 | mp1i 13 | . . . . . . . . 9 ⊢ (𝜑 → ran 𝐻 ⊆ ℕ0) |
| 19 | nn0ssre 12406 | . . . . . . . . . 10 ⊢ ℕ0 ⊆ ℝ | |
| 20 | ressxr 11178 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
| 21 | 19, 20 | sstri 3947 | . . . . . . . . 9 ⊢ ℕ0 ⊆ ℝ* |
| 22 | 18, 21 | sstrdi 3950 | . . . . . . . 8 ⊢ (𝜑 → ran 𝐻 ⊆ ℝ*) |
| 23 | 15, 22 | sstrid 3949 | . . . . . . 7 ⊢ (𝜑 → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*) |
| 24 | supxrcl 13235 | . . . . . . 7 ⊢ ((𝐻 “ (𝐹 supp 0 )) ⊆ ℝ* → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ ℝ*) | |
| 25 | 23, 24 | syl 17 | . . . . . 6 ⊢ (𝜑 → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ ℝ*) |
| 26 | 14, 25 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ*) |
| 27 | 26 | xrleidd 13072 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐹) ≤ (𝐷‘𝐹)) |
| 28 | 7, 8, 9, 10, 11, 12 | mdegleb 25985 | . . . . 5 ⊢ ((𝐹 ∈ 𝐵 ∧ (𝐷‘𝐹) ∈ ℝ*) → ((𝐷‘𝐹) ≤ (𝐷‘𝐹) ↔ ∀𝑥 ∈ 𝐴 ((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) |
| 29 | 6, 26, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐹) ≤ (𝐷‘𝐹) ↔ ∀𝑥 ∈ 𝐴 ((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) |
| 30 | 27, 29 | mpbid 232 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝐷‘𝐹) < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 )) |
| 31 | medglt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 32 | 5, 30, 31 | rspcdva 3580 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) < (𝐻‘𝑋) → (𝐹‘𝑋) = 0 )) |
| 33 | 1, 32 | mpd 15 | 1 ⊢ (𝜑 → (𝐹‘𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 ⊆ wss 3905 class class class wbr 5095 ↦ cmpt 5176 ◡ccnv 5622 ran crn 5624 “ cima 5626 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 supp csupp 8100 ↑m cmap 8760 Fincfn 8879 supcsup 9349 ℝcr 11027 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 ℕcn 12146 ℕ0cn0 12402 Basecbs 17138 0gc0g 17361 Σg cgsu 17362 ℂfldccnfld 21279 mPoly cmpl 21831 mDeg cmdg 25974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17363 df-gsum 17364 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-ur 20085 df-ring 20138 df-cring 20139 df-cnfld 21280 df-psr 21834 df-mpl 21836 df-mdeg 25976 |
| This theorem is referenced by: mdegaddle 25995 mdegvscale 25996 mdegmullem 25999 |
| Copyright terms: Public domain | W3C validator |