MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdeglt Structured version   Visualization version   GIF version

Theorem mdeglt 25992
Description: If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
mdeglt.f (𝜑𝐹𝐵)
medglt.x (𝜑𝑋𝐴)
mdeglt.lt (𝜑 → (𝐷𝐹) < (𝐻𝑋))
Assertion
Ref Expression
mdeglt (𝜑 → (𝐹𝑋) = 0 )
Distinct variable groups:   𝐴,   𝑚,𝐼   0 ,   ,𝐼,𝑚
Allowed substitution hints:   𝜑(,𝑚)   𝐴(𝑚)   𝐵(,𝑚)   𝐷(,𝑚)   𝑃(,𝑚)   𝑅(,𝑚)   𝐹(,𝑚)   𝐻(,𝑚)   𝑋(,𝑚)   0 (𝑚)

Proof of Theorem mdeglt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mdeglt.lt . 2 (𝜑 → (𝐷𝐹) < (𝐻𝑋))
2 fveq2 6817 . . . . 5 (𝑥 = 𝑋 → (𝐻𝑥) = (𝐻𝑋))
32breq2d 5098 . . . 4 (𝑥 = 𝑋 → ((𝐷𝐹) < (𝐻𝑥) ↔ (𝐷𝐹) < (𝐻𝑋)))
4 fveqeq2 6826 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥) = 0 ↔ (𝐹𝑋) = 0 ))
53, 4imbi12d 344 . . 3 (𝑥 = 𝑋 → (((𝐷𝐹) < (𝐻𝑥) → (𝐹𝑥) = 0 ) ↔ ((𝐷𝐹) < (𝐻𝑋) → (𝐹𝑋) = 0 )))
6 mdeglt.f . . . . . . 7 (𝜑𝐹𝐵)
7 mdegval.d . . . . . . . 8 𝐷 = (𝐼 mDeg 𝑅)
8 mdegval.p . . . . . . . 8 𝑃 = (𝐼 mPoly 𝑅)
9 mdegval.b . . . . . . . 8 𝐵 = (Base‘𝑃)
10 mdegval.z . . . . . . . 8 0 = (0g𝑅)
11 mdegval.a . . . . . . . 8 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
12 mdegval.h . . . . . . . 8 𝐻 = (𝐴 ↦ (ℂfld Σg ))
137, 8, 9, 10, 11, 12mdegval 25990 . . . . . . 7 (𝐹𝐵 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
146, 13syl 17 . . . . . 6 (𝜑 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
15 imassrn 6015 . . . . . . . 8 (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻
1611, 12tdeglem1 25985 . . . . . . . . . 10 𝐻:𝐴⟶ℕ0
17 frn 6653 . . . . . . . . . 10 (𝐻:𝐴⟶ℕ0 → ran 𝐻 ⊆ ℕ0)
1816, 17mp1i 13 . . . . . . . . 9 (𝜑 → ran 𝐻 ⊆ ℕ0)
19 nn0ssre 12380 . . . . . . . . . 10 0 ⊆ ℝ
20 ressxr 11151 . . . . . . . . . 10 ℝ ⊆ ℝ*
2119, 20sstri 3939 . . . . . . . . 9 0 ⊆ ℝ*
2218, 21sstrdi 3942 . . . . . . . 8 (𝜑 → ran 𝐻 ⊆ ℝ*)
2315, 22sstrid 3941 . . . . . . 7 (𝜑 → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)
24 supxrcl 13209 . . . . . . 7 ((𝐻 “ (𝐹 supp 0 )) ⊆ ℝ* → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ ℝ*)
2523, 24syl 17 . . . . . 6 (𝜑 → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ ℝ*)
2614, 25eqeltrd 2831 . . . . 5 (𝜑 → (𝐷𝐹) ∈ ℝ*)
2726xrleidd 13046 . . . 4 (𝜑 → (𝐷𝐹) ≤ (𝐷𝐹))
287, 8, 9, 10, 11, 12mdegleb 25991 . . . . 5 ((𝐹𝐵 ∧ (𝐷𝐹) ∈ ℝ*) → ((𝐷𝐹) ≤ (𝐷𝐹) ↔ ∀𝑥𝐴 ((𝐷𝐹) < (𝐻𝑥) → (𝐹𝑥) = 0 )))
296, 26, 28syl2anc 584 . . . 4 (𝜑 → ((𝐷𝐹) ≤ (𝐷𝐹) ↔ ∀𝑥𝐴 ((𝐷𝐹) < (𝐻𝑥) → (𝐹𝑥) = 0 )))
3027, 29mpbid 232 . . 3 (𝜑 → ∀𝑥𝐴 ((𝐷𝐹) < (𝐻𝑥) → (𝐹𝑥) = 0 ))
31 medglt.x . . 3 (𝜑𝑋𝐴)
325, 30, 31rspcdva 3573 . 2 (𝜑 → ((𝐷𝐹) < (𝐻𝑋) → (𝐹𝑋) = 0 ))
331, 32mpd 15 1 (𝜑 → (𝐹𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wral 3047  {crab 3395  wss 3897   class class class wbr 5086  cmpt 5167  ccnv 5610  ran crn 5612  cima 5614  wf 6472  cfv 6476  (class class class)co 7341   supp csupp 8085  m cmap 8745  Fincfn 8864  supcsup 9319  cr 11000  *cxr 11140   < clt 11141  cle 11142  cn 12120  0cn0 12376  Basecbs 17115  0gc0g 17338   Σg cgsu 17339  fldccnfld 21286   mPoly cmpl 21838   mDeg cmdg 25980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-0g 17340  df-gsum 17341  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-ur 20095  df-ring 20148  df-cring 20149  df-cnfld 21287  df-psr 21841  df-mpl 21843  df-mdeg 25982
This theorem is referenced by:  mdegaddle  26001  mdegvscale  26002  mdegmullem  26005
  Copyright terms: Public domain W3C validator