![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdeglt | Structured version Visualization version GIF version |
Description: If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
Ref | Expression |
---|---|
mdegval.d | β’ π· = (πΌ mDeg π ) |
mdegval.p | β’ π = (πΌ mPoly π ) |
mdegval.b | β’ π΅ = (Baseβπ) |
mdegval.z | β’ 0 = (0gβπ ) |
mdegval.a | β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} |
mdegval.h | β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) |
mdeglt.f | β’ (π β πΉ β π΅) |
medglt.x | β’ (π β π β π΄) |
mdeglt.lt | β’ (π β (π·βπΉ) < (π»βπ)) |
Ref | Expression |
---|---|
mdeglt | β’ (π β (πΉβπ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdeglt.lt | . 2 β’ (π β (π·βπΉ) < (π»βπ)) | |
2 | fveq2 6891 | . . . . 5 β’ (π₯ = π β (π»βπ₯) = (π»βπ)) | |
3 | 2 | breq2d 5160 | . . . 4 β’ (π₯ = π β ((π·βπΉ) < (π»βπ₯) β (π·βπΉ) < (π»βπ))) |
4 | fveqeq2 6900 | . . . 4 β’ (π₯ = π β ((πΉβπ₯) = 0 β (πΉβπ) = 0 )) | |
5 | 3, 4 | imbi12d 344 | . . 3 β’ (π₯ = π β (((π·βπΉ) < (π»βπ₯) β (πΉβπ₯) = 0 ) β ((π·βπΉ) < (π»βπ) β (πΉβπ) = 0 ))) |
6 | mdeglt.f | . . . . . . 7 β’ (π β πΉ β π΅) | |
7 | mdegval.d | . . . . . . . 8 β’ π· = (πΌ mDeg π ) | |
8 | mdegval.p | . . . . . . . 8 β’ π = (πΌ mPoly π ) | |
9 | mdegval.b | . . . . . . . 8 β’ π΅ = (Baseβπ) | |
10 | mdegval.z | . . . . . . . 8 β’ 0 = (0gβπ ) | |
11 | mdegval.a | . . . . . . . 8 β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} | |
12 | mdegval.h | . . . . . . . 8 β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) | |
13 | 7, 8, 9, 10, 11, 12 | mdegval 25580 | . . . . . . 7 β’ (πΉ β π΅ β (π·βπΉ) = sup((π» β (πΉ supp 0 )), β*, < )) |
14 | 6, 13 | syl 17 | . . . . . 6 β’ (π β (π·βπΉ) = sup((π» β (πΉ supp 0 )), β*, < )) |
15 | imassrn 6070 | . . . . . . . 8 β’ (π» β (πΉ supp 0 )) β ran π» | |
16 | 11, 12 | tdeglem1 25572 | . . . . . . . . . 10 β’ π»:π΄βΆβ0 |
17 | frn 6724 | . . . . . . . . . 10 β’ (π»:π΄βΆβ0 β ran π» β β0) | |
18 | 16, 17 | mp1i 13 | . . . . . . . . 9 β’ (π β ran π» β β0) |
19 | nn0ssre 12475 | . . . . . . . . . 10 β’ β0 β β | |
20 | ressxr 11257 | . . . . . . . . . 10 β’ β β β* | |
21 | 19, 20 | sstri 3991 | . . . . . . . . 9 β’ β0 β β* |
22 | 18, 21 | sstrdi 3994 | . . . . . . . 8 β’ (π β ran π» β β*) |
23 | 15, 22 | sstrid 3993 | . . . . . . 7 β’ (π β (π» β (πΉ supp 0 )) β β*) |
24 | supxrcl 13293 | . . . . . . 7 β’ ((π» β (πΉ supp 0 )) β β* β sup((π» β (πΉ supp 0 )), β*, < ) β β*) | |
25 | 23, 24 | syl 17 | . . . . . 6 β’ (π β sup((π» β (πΉ supp 0 )), β*, < ) β β*) |
26 | 14, 25 | eqeltrd 2833 | . . . . 5 β’ (π β (π·βπΉ) β β*) |
27 | 26 | xrleidd 13130 | . . . 4 β’ (π β (π·βπΉ) β€ (π·βπΉ)) |
28 | 7, 8, 9, 10, 11, 12 | mdegleb 25581 | . . . . 5 β’ ((πΉ β π΅ β§ (π·βπΉ) β β*) β ((π·βπΉ) β€ (π·βπΉ) β βπ₯ β π΄ ((π·βπΉ) < (π»βπ₯) β (πΉβπ₯) = 0 ))) |
29 | 6, 26, 28 | syl2anc 584 | . . . 4 β’ (π β ((π·βπΉ) β€ (π·βπΉ) β βπ₯ β π΄ ((π·βπΉ) < (π»βπ₯) β (πΉβπ₯) = 0 ))) |
30 | 27, 29 | mpbid 231 | . . 3 β’ (π β βπ₯ β π΄ ((π·βπΉ) < (π»βπ₯) β (πΉβπ₯) = 0 )) |
31 | medglt.x | . . 3 β’ (π β π β π΄) | |
32 | 5, 30, 31 | rspcdva 3613 | . 2 β’ (π β ((π·βπΉ) < (π»βπ) β (πΉβπ) = 0 )) |
33 | 1, 32 | mpd 15 | 1 β’ (π β (πΉβπ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 βwral 3061 {crab 3432 β wss 3948 class class class wbr 5148 β¦ cmpt 5231 β‘ccnv 5675 ran crn 5677 β cima 5679 βΆwf 6539 βcfv 6543 (class class class)co 7408 supp csupp 8145 βm cmap 8819 Fincfn 8938 supcsup 9434 βcr 11108 β*cxr 11246 < clt 11247 β€ cle 11248 βcn 12211 β0cn0 12471 Basecbs 17143 0gc0g 17384 Ξ£g cgsu 17385 βfldccnfld 20943 mPoly cmpl 21458 mDeg cmdg 25567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-fzo 13627 df-seq 13966 df-hash 14290 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-gsum 17387 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-grp 18821 df-minusg 18822 df-cntz 19180 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-cnfld 20944 df-psr 21461 df-mpl 21463 df-mdeg 25569 |
This theorem is referenced by: mdegaddle 25591 mdegvscale 25592 mdegmullem 25595 |
Copyright terms: Public domain | W3C validator |