| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2eqa | Structured version Visualization version GIF version | ||
| Description: Approximate equality of integrals. If 𝐹 = 𝐺 for almost all 𝑥, then ∫2𝐹 = ∫2𝐺. (Contributed by Mario Carneiro, 12-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg2lea.1 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) |
| itg2lea.2 | ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) |
| itg2lea.3 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| itg2lea.4 | ⊢ (𝜑 → (vol*‘𝐴) = 0) |
| itg2eqa.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| Ref | Expression |
|---|---|
| itg2eqa | ⊢ (𝜑 → (∫2‘𝐹) = (∫2‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2lea.1 | . . 3 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) | |
| 2 | itg2cl 25653 | . . 3 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) ∈ ℝ*) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ*) |
| 4 | itg2lea.2 | . . 3 ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) | |
| 5 | itg2cl 25653 | . . 3 ⊢ (𝐺:ℝ⟶(0[,]+∞) → (∫2‘𝐺) ∈ ℝ*) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ*) |
| 7 | itg2lea.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 8 | itg2lea.4 | . . 3 ⊢ (𝜑 → (vol*‘𝐴) = 0) | |
| 9 | iccssxr 13322 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 10 | eldifi 4079 | . . . . . . 7 ⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ) | |
| 11 | ffvelcdm 7009 | . . . . . . 7 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,]+∞)) | |
| 12 | 1, 10, 11 | syl2an 596 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ∈ (0[,]+∞)) |
| 13 | 9, 12 | sselid 3930 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ∈ ℝ*) |
| 14 | 13 | xrleidd 13043 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐹‘𝑥)) |
| 15 | itg2eqa.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
| 16 | 14, 15 | breqtrd 5115 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
| 17 | 1, 4, 7, 8, 16 | itg2lea 25665 | . 2 ⊢ (𝜑 → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
| 18 | 15, 14 | eqbrtrrd 5113 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) |
| 19 | 4, 1, 7, 8, 18 | itg2lea 25665 | . 2 ⊢ (𝜑 → (∫2‘𝐺) ≤ (∫2‘𝐹)) |
| 20 | 3, 6, 17, 19 | xrletrid 13046 | 1 ⊢ (𝜑 → (∫2‘𝐹) = (∫2‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∖ cdif 3897 ⊆ wss 3900 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ℝcr 10997 0cc0 10998 +∞cpnf 11135 ℝ*cxr 11137 ≤ cle 11139 [,]cicc 13240 vol*covol 25383 ∫2citg2 25537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-ioo 13241 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-sum 15586 df-rest 17318 df-topgen 17339 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-top 22802 df-topon 22819 df-bases 22854 df-cmp 23295 df-ovol 25385 df-vol 25386 df-mbf 25540 df-itg1 25541 df-itg2 25542 |
| This theorem is referenced by: itgeqa 25735 |
| Copyright terms: Public domain | W3C validator |