MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2eqa Structured version   Visualization version   GIF version

Theorem itg2eqa 24049
Description: Approximate equality of integrals. If 𝐹 = 𝐺 for almost all 𝑥, then 2𝐹 = ∫2𝐺. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
itg2lea.1 (𝜑𝐹:ℝ⟶(0[,]+∞))
itg2lea.2 (𝜑𝐺:ℝ⟶(0[,]+∞))
itg2lea.3 (𝜑𝐴 ⊆ ℝ)
itg2lea.4 (𝜑 → (vol*‘𝐴) = 0)
itg2eqa.5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = (𝐺𝑥))
Assertion
Ref Expression
itg2eqa (𝜑 → (∫2𝐹) = (∫2𝐺))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem itg2eqa
StepHypRef Expression
1 itg2lea.1 . . 3 (𝜑𝐹:ℝ⟶(0[,]+∞))
2 itg2cl 24036 . . 3 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
31, 2syl 17 . 2 (𝜑 → (∫2𝐹) ∈ ℝ*)
4 itg2lea.2 . . 3 (𝜑𝐺:ℝ⟶(0[,]+∞))
5 itg2cl 24036 . . 3 (𝐺:ℝ⟶(0[,]+∞) → (∫2𝐺) ∈ ℝ*)
64, 5syl 17 . 2 (𝜑 → (∫2𝐺) ∈ ℝ*)
7 itg2lea.3 . . 3 (𝜑𝐴 ⊆ ℝ)
8 itg2lea.4 . . 3 (𝜑 → (vol*‘𝐴) = 0)
9 iccssxr 12635 . . . . . 6 (0[,]+∞) ⊆ ℝ*
10 eldifi 3994 . . . . . . 7 (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ)
11 ffvelrn 6674 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
121, 10, 11syl2an 586 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ∈ (0[,]+∞))
139, 12sseldi 3857 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ∈ ℝ*)
1413xrleidd 12362 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ≤ (𝐹𝑥))
15 itg2eqa.5 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = (𝐺𝑥))
1614, 15breqtrd 4955 . . 3 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ≤ (𝐺𝑥))
171, 4, 7, 8, 16itg2lea 24048 . 2 (𝜑 → (∫2𝐹) ≤ (∫2𝐺))
1815, 14eqbrtrrd 4953 . . 3 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
194, 1, 7, 8, 18itg2lea 24048 . 2 (𝜑 → (∫2𝐺) ≤ (∫2𝐹))
203, 6, 17, 19xrletrid 12365 1 (𝜑 → (∫2𝐹) = (∫2𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  cdif 3827  wss 3830  wf 6184  cfv 6188  (class class class)co 6976  cr 10334  0cc0 10335  +∞cpnf 10471  *cxr 10473  cle 10475  [,]cicc 12557  vol*covol 23766  2citg2 23920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-addf 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-disj 4898  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-ofr 7228  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-map 8208  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fi 8670  df-sup 8701  df-inf 8702  df-oi 8769  df-dju 9124  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-n0 11708  df-z 11794  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-xadd 12325  df-xmul 12326  df-ioo 12558  df-ico 12560  df-icc 12561  df-fz 12709  df-fzo 12850  df-fl 12977  df-seq 13185  df-exp 13245  df-hash 13506  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-clim 14706  df-sum 14904  df-rest 16552  df-topgen 16573  df-psmet 20239  df-xmet 20240  df-met 20241  df-bl 20242  df-mopn 20243  df-top 21206  df-topon 21223  df-bases 21258  df-cmp 21699  df-ovol 23768  df-vol 23769  df-mbf 23923  df-itg1 23924  df-itg2 23925
This theorem is referenced by:  itgeqa  24117
  Copyright terms: Public domain W3C validator