ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  perfectlem1 GIF version

Theorem perfectlem1 15515
Description: Lemma for perfect 15517. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
perfectlem.1 (𝜑𝐴 ∈ ℕ)
perfectlem.2 (𝜑𝐵 ∈ ℕ)
perfectlem.3 (𝜑 → ¬ 2 ∥ 𝐵)
perfectlem.4 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
Assertion
Ref Expression
perfectlem1 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))

Proof of Theorem perfectlem1
StepHypRef Expression
1 2nn 9205 . . 3 2 ∈ ℕ
2 perfectlem.1 . . . . 5 (𝜑𝐴 ∈ ℕ)
32nnnn0d 9355 . . . 4 (𝜑𝐴 ∈ ℕ0)
4 peano2nn0 9342 . . . 4 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0)
53, 4syl 14 . . 3 (𝜑 → (𝐴 + 1) ∈ ℕ0)
6 nnexpcl 10704 . . 3 ((2 ∈ ℕ ∧ (𝐴 + 1) ∈ ℕ0) → (2↑(𝐴 + 1)) ∈ ℕ)
71, 5, 6sylancr 414 . 2 (𝜑 → (2↑(𝐴 + 1)) ∈ ℕ)
8 2re 9113 . . . 4 2 ∈ ℝ
92peano2nnd 9058 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℕ)
10 1lt2 9213 . . . . 5 1 < 2
1110a1i 9 . . . 4 (𝜑 → 1 < 2)
12 expgt1 10729 . . . 4 ((2 ∈ ℝ ∧ (𝐴 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐴 + 1)))
138, 9, 11, 12mp3an2i 1355 . . 3 (𝜑 → 1 < (2↑(𝐴 + 1)))
14 1nn 9054 . . . 4 1 ∈ ℕ
15 nnsub 9082 . . . 4 ((1 ∈ ℕ ∧ (2↑(𝐴 + 1)) ∈ ℕ) → (1 < (2↑(𝐴 + 1)) ↔ ((2↑(𝐴 + 1)) − 1) ∈ ℕ))
1614, 7, 15sylancr 414 . . 3 (𝜑 → (1 < (2↑(𝐴 + 1)) ↔ ((2↑(𝐴 + 1)) − 1) ∈ ℕ))
1713, 16mpbid 147 . 2 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℕ)
187nnzd 9501 . . . . . . 7 (𝜑 → (2↑(𝐴 + 1)) ∈ ℤ)
19 peano2zm 9417 . . . . . . 7 ((2↑(𝐴 + 1)) ∈ ℤ → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
2018, 19syl 14 . . . . . 6 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
21 1nn0 9318 . . . . . . . 8 1 ∈ ℕ0
22 perfectlem.2 . . . . . . . 8 (𝜑𝐵 ∈ ℕ)
23 sgmnncl 15504 . . . . . . . 8 ((1 ∈ ℕ0𝐵 ∈ ℕ) → (1 σ 𝐵) ∈ ℕ)
2421, 22, 23sylancr 414 . . . . . . 7 (𝜑 → (1 σ 𝐵) ∈ ℕ)
2524nnzd 9501 . . . . . 6 (𝜑 → (1 σ 𝐵) ∈ ℤ)
26 dvdsmul1 12168 . . . . . 6 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (1 σ 𝐵) ∈ ℤ) → ((2↑(𝐴 + 1)) − 1) ∥ (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
2720, 25, 26syl2anc 411 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
28 2cn 9114 . . . . . . . . 9 2 ∈ ℂ
29 expp1 10698 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
3028, 3, 29sylancr 414 . . . . . . . 8 (𝜑 → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
31 nnexpcl 10704 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
321, 3, 31sylancr 414 . . . . . . . . . 10 (𝜑 → (2↑𝐴) ∈ ℕ)
3332nncnd 9057 . . . . . . . . 9 (𝜑 → (2↑𝐴) ∈ ℂ)
34 mulcom 8061 . . . . . . . . 9 (((2↑𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
3533, 28, 34sylancl 413 . . . . . . . 8 (𝜑 → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
3630, 35eqtrd 2239 . . . . . . 7 (𝜑 → (2↑(𝐴 + 1)) = (2 · (2↑𝐴)))
3736oveq1d 5966 . . . . . 6 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = ((2 · (2↑𝐴)) · 𝐵))
3828a1i 9 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
3922nncnd 9057 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4038, 33, 39mulassd 8103 . . . . . 6 (𝜑 → ((2 · (2↑𝐴)) · 𝐵) = (2 · ((2↑𝐴) · 𝐵)))
41 ax-1cn 8025 . . . . . . . . 9 1 ∈ ℂ
4241a1i 9 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
43 perfectlem.3 . . . . . . . . . 10 (𝜑 → ¬ 2 ∥ 𝐵)
44 2prm 12493 . . . . . . . . . . 11 2 ∈ ℙ
4522nnzd 9501 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
46 coprm 12510 . . . . . . . . . . 11 ((2 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1))
4744, 45, 46sylancr 414 . . . . . . . . . 10 (𝜑 → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1))
4843, 47mpbid 147 . . . . . . . . 9 (𝜑 → (2 gcd 𝐵) = 1)
49 2z 9407 . . . . . . . . . 10 2 ∈ ℤ
50 rpexp1i 12520 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
5149, 45, 3, 50mp3an2i 1355 . . . . . . . . 9 (𝜑 → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
5248, 51mpd 13 . . . . . . . 8 (𝜑 → ((2↑𝐴) gcd 𝐵) = 1)
53 sgmmul 15512 . . . . . . . 8 ((1 ∈ ℂ ∧ ((2↑𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ((2↑𝐴) gcd 𝐵) = 1)) → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
5442, 32, 22, 52, 53syl13anc 1252 . . . . . . 7 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
55 perfectlem.4 . . . . . . 7 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
562nncnd 9057 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
57 pncan 8285 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
5856, 41, 57sylancl 413 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 1) − 1) = 𝐴)
5958oveq2d 5967 . . . . . . . . . 10 (𝜑 → (2↑((𝐴 + 1) − 1)) = (2↑𝐴))
6059oveq2d 5967 . . . . . . . . 9 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = (1 σ (2↑𝐴)))
61 1sgm2ppw 15511 . . . . . . . . . 10 ((𝐴 + 1) ∈ ℕ → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
629, 61syl 14 . . . . . . . . 9 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
6360, 62eqtr3d 2241 . . . . . . . 8 (𝜑 → (1 σ (2↑𝐴)) = ((2↑(𝐴 + 1)) − 1))
6463oveq1d 5966 . . . . . . 7 (𝜑 → ((1 σ (2↑𝐴)) · (1 σ 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6554, 55, 643eqtr3d 2247 . . . . . 6 (𝜑 → (2 · ((2↑𝐴) · 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6637, 40, 653eqtrd 2243 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6727, 66breqtrrd 4075 . . . 4 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵))
6820, 18gcdcomd 12339 . . . . 5 (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)))
69 iddvdsexp 12170 . . . . . . . . 9 ((2 ∈ ℤ ∧ (𝐴 + 1) ∈ ℕ) → 2 ∥ (2↑(𝐴 + 1)))
7049, 9, 69sylancr 414 . . . . . . . 8 (𝜑 → 2 ∥ (2↑(𝐴 + 1)))
71 n2dvds1 12267 . . . . . . . . . 10 ¬ 2 ∥ 1
7249a1i 9 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℤ)
73 1zzd 9406 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
7472, 18, 733jca 1180 . . . . . . . . . . 11 (𝜑 → (2 ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 1 ∈ ℤ))
75 dvdssub2 12190 . . . . . . . . . . 11 (((2 ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 1 ∈ ℤ) ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → (2 ∥ (2↑(𝐴 + 1)) ↔ 2 ∥ 1))
7674, 75sylan 283 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → (2 ∥ (2↑(𝐴 + 1)) ↔ 2 ∥ 1))
7771, 76mtbiri 677 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → ¬ 2 ∥ (2↑(𝐴 + 1)))
7877ex 115 . . . . . . . 8 (𝜑 → (2 ∥ ((2↑(𝐴 + 1)) − 1) → ¬ 2 ∥ (2↑(𝐴 + 1))))
7970, 78mt2d 626 . . . . . . 7 (𝜑 → ¬ 2 ∥ ((2↑(𝐴 + 1)) − 1))
80 coprm 12510 . . . . . . . 8 ((2 ∈ ℙ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℤ) → (¬ 2 ∥ ((2↑(𝐴 + 1)) − 1) ↔ (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8144, 20, 80sylancr 414 . . . . . . 7 (𝜑 → (¬ 2 ∥ ((2↑(𝐴 + 1)) − 1) ↔ (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8279, 81mpbid 147 . . . . . 6 (𝜑 → (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1)
83 rpexp1i 12520 . . . . . . 7 ((2 ∈ ℤ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (𝐴 + 1) ∈ ℕ0) → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8449, 20, 5, 83mp3an2i 1355 . . . . . 6 (𝜑 → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8582, 84mpd 13 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1)
8668, 85eqtrd 2239 . . . 4 (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1)
87 coprmdvds 12458 . . . . 5 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵) ∧ (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1) → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵))
8820, 18, 45, 87syl3anc 1250 . . . 4 (𝜑 → ((((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵) ∧ (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1) → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵))
8967, 86, 88mp2and 433 . . 3 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵)
90 nndivdvds 12151 . . . 4 ((𝐵 ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ) → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
9122, 17, 90syl2anc 411 . . 3 (𝜑 → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
9289, 91mpbid 147 . 2 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)
937, 17, 923jca 1180 1 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4047  (class class class)co 5951  cc 7930  cr 7931  1c1 7933   + caddc 7935   · cmul 7937   < clt 8114  cmin 8250   / cdiv 8752  cn 9043  2c2 9094  0cn0 9302  cz 9379  cexp 10690  cdvds 12142   gcd cgcd 12318  cprime 12473   σ csgm 15497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052  ax-pre-suploc 8053  ax-addf 8054  ax-mulf 8055
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-disj 4024  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-2o 6510  df-oadd 6513  df-er 6627  df-map 6744  df-pm 6745  df-en 6835  df-dom 6836  df-fin 6837  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-xnn0 9366  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-xneg 9901  df-xadd 9902  df-ioo 10021  df-ico 10023  df-icc 10024  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-fac 10878  df-bc 10900  df-ihash 10928  df-shft 11170  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-ef 12003  df-e 12004  df-dvds 12143  df-gcd 12319  df-prm 12474  df-pc 12652  df-rest 13117  df-topgen 13136  df-psmet 14349  df-xmet 14350  df-met 14351  df-bl 14352  df-mopn 14353  df-top 14514  df-topon 14527  df-bases 14559  df-ntr 14612  df-cn 14704  df-cnp 14705  df-tx 14769  df-cncf 15087  df-limced 15172  df-dvap 15173  df-relog 15374  df-rpcxp 15375  df-sgm 15498
This theorem is referenced by:  perfectlem2  15516
  Copyright terms: Public domain W3C validator