| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dec5dvds | GIF version | ||
| Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| dec5dvds.1 | ⊢ 𝐴 ∈ ℕ0 |
| dec5dvds.2 | ⊢ 𝐵 ∈ ℕ |
| dec5dvds.3 | ⊢ 𝐵 < 5 |
| Ref | Expression |
|---|---|
| dec5dvds | ⊢ ¬ 5 ∥ ;𝐴𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn 9208 | . 2 ⊢ 5 ∈ ℕ | |
| 2 | 2nn0 9319 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 3 | dec5dvds.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | 2, 3 | nn0mulcli 9340 | . 2 ⊢ (2 · 𝐴) ∈ ℕ0 |
| 5 | dec5dvds.2 | . 2 ⊢ 𝐵 ∈ ℕ | |
| 6 | 5cn 9123 | . . . . . 6 ⊢ 5 ∈ ℂ | |
| 7 | 2cn 9114 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 8 | 3 | nn0cni 9314 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 9 | 6, 7, 8 | mulassi 8088 | . . . . 5 ⊢ ((5 · 2) · 𝐴) = (5 · (2 · 𝐴)) |
| 10 | 5t2e10 9610 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
| 11 | 10 | oveq1i 5961 | . . . . 5 ⊢ ((5 · 2) · 𝐴) = (;10 · 𝐴) |
| 12 | 9, 11 | eqtr3i 2229 | . . . 4 ⊢ (5 · (2 · 𝐴)) = (;10 · 𝐴) |
| 13 | 12 | oveq1i 5961 | . . 3 ⊢ ((5 · (2 · 𝐴)) + 𝐵) = ((;10 · 𝐴) + 𝐵) |
| 14 | dfdec10 9514 | . . 3 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 15 | 13, 14 | eqtr4i 2230 | . 2 ⊢ ((5 · (2 · 𝐴)) + 𝐵) = ;𝐴𝐵 |
| 16 | dec5dvds.3 | . 2 ⊢ 𝐵 < 5 | |
| 17 | 1, 4, 5, 15, 16 | ndvdsi 12288 | 1 ⊢ ¬ 5 ∥ ;𝐴𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2177 class class class wbr 4047 (class class class)co 5951 0cc0 7932 1c1 7933 + caddc 7935 · cmul 7937 < clt 8114 ℕcn 9043 2c2 9094 5c5 9097 ℕ0cn0 9302 ;cdc 9511 ∥ cdvds 12142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-uz 9656 df-q 9748 df-rp 9783 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-dvds 12143 |
| This theorem is referenced by: dec5dvds2 12780 |
| Copyright terms: Public domain | W3C validator |