ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqvald GIF version

Theorem sqvald 10653
Description: Value of square. Inference version. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
expcld.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
Assertion
Ref Expression
sqvald (๐œ‘ โ†’ (๐ดโ†‘2) = (๐ด ยท ๐ด))

Proof of Theorem sqvald
StepHypRef Expression
1 expcld.1 . 2 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
2 sqval 10580 . 2 (๐ด โˆˆ โ„‚ โ†’ (๐ดโ†‘2) = (๐ด ยท ๐ด))
31, 2syl 14 1 (๐œ‘ โ†’ (๐ดโ†‘2) = (๐ด ยท ๐ด))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   = wceq 1353   โˆˆ wcel 2148  (class class class)co 5877  โ„‚cc 7811   ยท cmul 7818  2c2 8972  โ†‘cexp 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448  df-exp 10522
This theorem is referenced by:  sqoddm1div8  10676  nn0le2msqd  10701  nn0opthlem1d  10702  nn0opth2d  10705  cjmulval  10899  resqrexlemover  11021  resqrexlemdec  11022  resqrexlemcalc1  11025  resqrexlemcalc2  11026  remsqsqrt  11043  sqrtmsq  11056  absext  11074  absid  11082  absre  11088  absresq  11089  tanval3ap  11724  sincossq  11758  cos2t  11760  sqnprm  12138  isprm5lem  12143  sqpweven  12177  2sqpwodd  12178  coprimeprodsq  12259  pockthg  12357  4sqlem7  12384  4sqlem10  12387  mul4sqlem  12393  dvrecap  14262  dveflem  14272  tangtx  14344  rpcxpsqrt  14427  binom4  14482  lgssq  14526  lgssq2  14527  2sqlem3  14549  2sqlem8  14555
  Copyright terms: Public domain W3C validator