| Step | Hyp | Ref
| Expression |
| 1 | | elfznn0 10238 |
. . . . . . . 8
⊢ (𝑌 ∈ (0...𝑍) → 𝑌 ∈
ℕ0) |
| 2 | 1 | ad2antrl 490 |
. . . . . . 7
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈
ℕ0) |
| 3 | | pfxclg 11133 |
. . . . . . 7
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ ℕ0) → (𝑆 prefix 𝑌) ∈ Word 𝐴) |
| 4 | 2, 3 | syldan 282 |
. . . . . 6
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 prefix 𝑌) ∈ Word 𝐴) |
| 5 | | simpl 109 |
. . . . . . 7
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑆 ∈ Word 𝐴) |
| 6 | 2 | nn0zd 9495 |
. . . . . . 7
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℤ) |
| 7 | | elfzelz 10149 |
. . . . . . . . 9
⊢ (𝑍 ∈
(0...(♯‘𝑆))
→ 𝑍 ∈
ℤ) |
| 8 | 7 | adantl 277 |
. . . . . . . 8
⊢ ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → 𝑍 ∈ ℤ) |
| 9 | 8 | adantl 277 |
. . . . . . 7
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑍 ∈ ℤ) |
| 10 | | swrdclg 11106 |
. . . . . . 7
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (𝑆 substr 〈𝑌, 𝑍〉) ∈ Word 𝐴) |
| 11 | 5, 6, 9, 10 | syl3anc 1250 |
. . . . . 6
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr 〈𝑌, 𝑍〉) ∈ Word 𝐴) |
| 12 | | ccatcl 11052 |
. . . . . 6
⊢ (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr 〈𝑌, 𝑍〉) ∈ Word 𝐴) → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉)) ∈ Word 𝐴) |
| 13 | 4, 11, 12 | syl2anc 411 |
. . . . 5
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉)) ∈ Word 𝐴) |
| 14 | | wrdfn 11011 |
. . . . 5
⊢ (((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉)) ∈ Word 𝐴 → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉)) Fn (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉))))) |
| 15 | 13, 14 | syl 14 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉)) Fn (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉))))) |
| 16 | | ccatlen 11054 |
. . . . . . . 8
⊢ (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr 〈𝑌, 𝑍〉) ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉))) = ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr 〈𝑌, 𝑍〉)))) |
| 17 | 4, 11, 16 | syl2anc 411 |
. . . . . . 7
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) →
(♯‘((𝑆 prefix
𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉))) = ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr 〈𝑌, 𝑍〉)))) |
| 18 | | fzass4 10186 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈
(0...(♯‘𝑆))
∧ 𝑍 ∈ (𝑌...(♯‘𝑆))) ↔ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) |
| 19 | 18 | biimpri 133 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑍 ∈ (𝑌...(♯‘𝑆)))) |
| 20 | 19 | simpld 112 |
. . . . . . . . 9
⊢ ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → 𝑌 ∈ (0...(♯‘𝑆))) |
| 21 | | pfxlen 11139 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝑌)) = 𝑌) |
| 22 | 20, 21 | sylan2 286 |
. . . . . . . 8
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) →
(♯‘(𝑆 prefix
𝑌)) = 𝑌) |
| 23 | | swrdlen 11108 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr 〈𝑌, 𝑍〉)) = (𝑍 − 𝑌)) |
| 24 | 23 | 3expb 1207 |
. . . . . . . 8
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) →
(♯‘(𝑆 substr
〈𝑌, 𝑍〉)) = (𝑍 − 𝑌)) |
| 25 | 22, 24 | oveq12d 5964 |
. . . . . . 7
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) →
((♯‘(𝑆 prefix
𝑌)) + (♯‘(𝑆 substr 〈𝑌, 𝑍〉))) = (𝑌 + (𝑍 − 𝑌))) |
| 26 | | elfzelz 10149 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (0...𝑍) → 𝑌 ∈ ℤ) |
| 27 | 26 | zcnd 9498 |
. . . . . . . . 9
⊢ (𝑌 ∈ (0...𝑍) → 𝑌 ∈ ℂ) |
| 28 | 7 | zcnd 9498 |
. . . . . . . . 9
⊢ (𝑍 ∈
(0...(♯‘𝑆))
→ 𝑍 ∈
ℂ) |
| 29 | | pncan3 8282 |
. . . . . . . . 9
⊢ ((𝑌 ∈ ℂ ∧ 𝑍 ∈ ℂ) → (𝑌 + (𝑍 − 𝑌)) = 𝑍) |
| 30 | 27, 28, 29 | syl2an 289 |
. . . . . . . 8
⊢ ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑌 + (𝑍 − 𝑌)) = 𝑍) |
| 31 | 30 | adantl 277 |
. . . . . . 7
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑌 + (𝑍 − 𝑌)) = 𝑍) |
| 32 | 17, 25, 31 | 3eqtrd 2242 |
. . . . . 6
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) →
(♯‘((𝑆 prefix
𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉))) = 𝑍) |
| 33 | 32 | oveq2d 5962 |
. . . . 5
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) →
(0..^(♯‘((𝑆
prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉)))) = (0..^𝑍)) |
| 34 | 33 | fneq2d 5366 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉)) Fn (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉)))) ↔ ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉)) Fn (0..^𝑍))) |
| 35 | 15, 34 | mpbid 147 |
. . 3
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉)) Fn (0..^𝑍)) |
| 36 | | pfxfn 11137 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝑍) Fn (0..^𝑍)) |
| 37 | 36 | adantrl 478 |
. . 3
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 prefix 𝑍) Fn (0..^𝑍)) |
| 38 | | id 19 |
. . . . . 6
⊢ (𝑥 ∈ (0..^𝑍) → 𝑥 ∈ (0..^𝑍)) |
| 39 | 26 | ad2antrl 490 |
. . . . . 6
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℤ) |
| 40 | | fzospliti 10302 |
. . . . . 6
⊢ ((𝑥 ∈ (0..^𝑍) ∧ 𝑌 ∈ ℤ) → (𝑥 ∈ (0..^𝑌) ∨ 𝑥 ∈ (𝑌..^𝑍))) |
| 41 | 38, 39, 40 | syl2anr 290 |
. . . . 5
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → (𝑥 ∈ (0..^𝑌) ∨ 𝑥 ∈ (𝑌..^𝑍))) |
| 42 | 4 | adantr 276 |
. . . . . . . 8
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (𝑆 prefix 𝑌) ∈ Word 𝐴) |
| 43 | 11 | adantr 276 |
. . . . . . . 8
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (𝑆 substr 〈𝑌, 𝑍〉) ∈ Word 𝐴) |
| 44 | 22 | oveq2d 5962 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) →
(0..^(♯‘(𝑆
prefix 𝑌))) = (0..^𝑌)) |
| 45 | 44 | eleq2d 2275 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(♯‘(𝑆 prefix 𝑌))) ↔ 𝑥 ∈ (0..^𝑌))) |
| 46 | 45 | biimpar 297 |
. . . . . . . 8
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → 𝑥 ∈ (0..^(♯‘(𝑆 prefix 𝑌)))) |
| 47 | | ccatval1 11056 |
. . . . . . . 8
⊢ (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr 〈𝑌, 𝑍〉) ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘(𝑆 prefix 𝑌)))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉))‘𝑥) = ((𝑆 prefix 𝑌)‘𝑥)) |
| 48 | 42, 43, 46, 47 | syl3anc 1250 |
. . . . . . 7
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉))‘𝑥) = ((𝑆 prefix 𝑌)‘𝑥)) |
| 49 | 20 | adantl 277 |
. . . . . . . 8
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (0...(♯‘𝑆))) |
| 50 | | id 19 |
. . . . . . . 8
⊢ (𝑥 ∈ (0..^𝑌) → 𝑥 ∈ (0..^𝑌)) |
| 51 | | pfxfv 11138 |
. . . . . . . 8
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑥 ∈ (0..^𝑌)) → ((𝑆 prefix 𝑌)‘𝑥) = (𝑆‘𝑥)) |
| 52 | 5, 49, 50, 51 | syl2an3an 1311 |
. . . . . . 7
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → ((𝑆 prefix 𝑌)‘𝑥) = (𝑆‘𝑥)) |
| 53 | 48, 52 | eqtrd 2238 |
. . . . . 6
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉))‘𝑥) = (𝑆‘𝑥)) |
| 54 | 4 | adantr 276 |
. . . . . . . 8
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑆 prefix 𝑌) ∈ Word 𝐴) |
| 55 | 11 | adantr 276 |
. . . . . . . 8
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑆 substr 〈𝑌, 𝑍〉) ∈ Word 𝐴) |
| 56 | 25, 31 | eqtrd 2238 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) →
((♯‘(𝑆 prefix
𝑌)) + (♯‘(𝑆 substr 〈𝑌, 𝑍〉))) = 𝑍) |
| 57 | 22, 56 | oveq12d 5964 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) →
((♯‘(𝑆 prefix
𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr 〈𝑌, 𝑍〉)))) = (𝑌..^𝑍)) |
| 58 | 57 | eleq2d 2275 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ ((♯‘(𝑆 prefix 𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr 〈𝑌, 𝑍〉)))) ↔ 𝑥 ∈ (𝑌..^𝑍))) |
| 59 | 58 | biimpar 297 |
. . . . . . . 8
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → 𝑥 ∈ ((♯‘(𝑆 prefix 𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr 〈𝑌, 𝑍〉))))) |
| 60 | | ccatval2 11057 |
. . . . . . . 8
⊢ (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr 〈𝑌, 𝑍〉) ∈ Word 𝐴 ∧ 𝑥 ∈ ((♯‘(𝑆 prefix 𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr 〈𝑌, 𝑍〉))))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉))‘𝑥) = ((𝑆 substr 〈𝑌, 𝑍〉)‘(𝑥 − (♯‘(𝑆 prefix 𝑌))))) |
| 61 | 54, 55, 59, 60 | syl3anc 1250 |
. . . . . . 7
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉))‘𝑥) = ((𝑆 substr 〈𝑌, 𝑍〉)‘(𝑥 − (♯‘(𝑆 prefix 𝑌))))) |
| 62 | | id 19 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) |
| 63 | 62 | 3expb 1207 |
. . . . . . . 8
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) |
| 64 | 22 | oveq2d 5962 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 − (♯‘(𝑆 prefix 𝑌))) = (𝑥 − 𝑌)) |
| 65 | 64 | adantr 276 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥 − (♯‘(𝑆 prefix 𝑌))) = (𝑥 − 𝑌)) |
| 66 | | id 19 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑌..^𝑍) → 𝑥 ∈ (𝑌..^𝑍)) |
| 67 | | fzosubel 10325 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (𝑌..^𝑍) ∧ 𝑌 ∈ ℤ) → (𝑥 − 𝑌) ∈ ((𝑌 − 𝑌)..^(𝑍 − 𝑌))) |
| 68 | 66, 39, 67 | syl2anr 290 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥 − 𝑌) ∈ ((𝑌 − 𝑌)..^(𝑍 − 𝑌))) |
| 69 | 27 | subidd 8373 |
. . . . . . . . . . . . . 14
⊢ (𝑌 ∈ (0...𝑍) → (𝑌 − 𝑌) = 0) |
| 70 | 69 | oveq1d 5961 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ (0...𝑍) → ((𝑌 − 𝑌)..^(𝑍 − 𝑌)) = (0..^(𝑍 − 𝑌))) |
| 71 | 70 | eleq2d 2275 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ (0...𝑍) → ((𝑥 − 𝑌) ∈ ((𝑌 − 𝑌)..^(𝑍 − 𝑌)) ↔ (𝑥 − 𝑌) ∈ (0..^(𝑍 − 𝑌)))) |
| 72 | 71 | ad2antrl 490 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑥 − 𝑌) ∈ ((𝑌 − 𝑌)..^(𝑍 − 𝑌)) ↔ (𝑥 − 𝑌) ∈ (0..^(𝑍 − 𝑌)))) |
| 73 | 72 | adantr 276 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥 − 𝑌) ∈ ((𝑌 − 𝑌)..^(𝑍 − 𝑌)) ↔ (𝑥 − 𝑌) ∈ (0..^(𝑍 − 𝑌)))) |
| 74 | 68, 73 | mpbid 147 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥 − 𝑌) ∈ (0..^(𝑍 − 𝑌))) |
| 75 | 65, 74 | eqeltrd 2282 |
. . . . . . . 8
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥 − (♯‘(𝑆 prefix 𝑌))) ∈ (0..^(𝑍 − 𝑌))) |
| 76 | | swrdfv 11109 |
. . . . . . . 8
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) ∧ (𝑥 − (♯‘(𝑆 prefix 𝑌))) ∈ (0..^(𝑍 − 𝑌))) → ((𝑆 substr 〈𝑌, 𝑍〉)‘(𝑥 − (♯‘(𝑆 prefix 𝑌)))) = (𝑆‘((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌))) |
| 77 | 63, 75, 76 | syl2an2r 595 |
. . . . . . 7
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑆 substr 〈𝑌, 𝑍〉)‘(𝑥 − (♯‘(𝑆 prefix 𝑌)))) = (𝑆‘((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌))) |
| 78 | 64 | oveq1d 5961 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌) = ((𝑥 − 𝑌) + 𝑌)) |
| 79 | 78 | adantr 276 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌) = ((𝑥 − 𝑌) + 𝑌)) |
| 80 | | elfzoelz 10271 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑌..^𝑍) → 𝑥 ∈ ℤ) |
| 81 | 80 | zcnd 9498 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝑌..^𝑍) → 𝑥 ∈ ℂ) |
| 82 | 27 | ad2antrl 490 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℂ) |
| 83 | | npcan 8283 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑥 − 𝑌) + 𝑌) = 𝑥) |
| 84 | 81, 82, 83 | syl2anr 290 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥 − 𝑌) + 𝑌) = 𝑥) |
| 85 | 79, 84 | eqtrd 2238 |
. . . . . . . 8
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌) = 𝑥) |
| 86 | 85 | fveq2d 5582 |
. . . . . . 7
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑆‘((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌)) = (𝑆‘𝑥)) |
| 87 | 61, 77, 86 | 3eqtrd 2242 |
. . . . . 6
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉))‘𝑥) = (𝑆‘𝑥)) |
| 88 | 53, 87 | jaodan 799 |
. . . . 5
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ (𝑥 ∈ (0..^𝑌) ∨ 𝑥 ∈ (𝑌..^𝑍))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉))‘𝑥) = (𝑆‘𝑥)) |
| 89 | 41, 88 | syldan 282 |
. . . 4
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉))‘𝑥) = (𝑆‘𝑥)) |
| 90 | | pfxfv 11138 |
. . . . . 6
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑍 ∈ (0...(♯‘𝑆)) ∧ 𝑥 ∈ (0..^𝑍)) → ((𝑆 prefix 𝑍)‘𝑥) = (𝑆‘𝑥)) |
| 91 | 90 | 3expa 1206 |
. . . . 5
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝑍 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^𝑍)) → ((𝑆 prefix 𝑍)‘𝑥) = (𝑆‘𝑥)) |
| 92 | 91 | adantlrl 482 |
. . . 4
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → ((𝑆 prefix 𝑍)‘𝑥) = (𝑆‘𝑥)) |
| 93 | 89, 92 | eqtr4d 2241 |
. . 3
⊢ (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉))‘𝑥) = ((𝑆 prefix 𝑍)‘𝑥)) |
| 94 | 35, 37, 93 | eqfnfvd 5682 |
. 2
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉)) = (𝑆 prefix 𝑍)) |
| 95 | 94 | 3impb 1202 |
1
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, 𝑍〉)) = (𝑆 prefix 𝑍)) |