ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccatpfx GIF version

Theorem ccatpfx 11192
Description: Concatenating a prefix with an adjacent subword makes a longer prefix. (Contributed by AV, 7-May-2020.)
Assertion
Ref Expression
ccatpfx ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 prefix 𝑍))

Proof of Theorem ccatpfx
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfznn0 10271 . . . . . . . 8 (𝑌 ∈ (0...𝑍) → 𝑌 ∈ ℕ0)
21ad2antrl 490 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℕ0)
3 pfxclg 11169 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝑌 ∈ ℕ0) → (𝑆 prefix 𝑌) ∈ Word 𝐴)
42, 3syldan 282 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 prefix 𝑌) ∈ Word 𝐴)
5 simpl 109 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑆 ∈ Word 𝐴)
62nn0zd 9528 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℤ)
7 elfzelz 10182 . . . . . . . . 9 (𝑍 ∈ (0...(♯‘𝑆)) → 𝑍 ∈ ℤ)
87adantl 277 . . . . . . . 8 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → 𝑍 ∈ ℤ)
98adantl 277 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑍 ∈ ℤ)
10 swrdclg 11141 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝑌 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
115, 6, 9, 10syl3anc 1250 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
12 ccatcl 11087 . . . . . 6 (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴)
134, 11, 12syl2anc 411 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴)
14 wrdfn 11046 . . . . 5 (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴 → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))))
1513, 14syl 14 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))))
16 ccatlen 11089 . . . . . . . 8 (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))
174, 11, 16syl2anc 411 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))
18 fzass4 10219 . . . . . . . . . . 11 ((𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑍 ∈ (𝑌...(♯‘𝑆))) ↔ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))))
1918biimpri 133 . . . . . . . . . 10 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑍 ∈ (𝑌...(♯‘𝑆))))
2019simpld 112 . . . . . . . . 9 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → 𝑌 ∈ (0...(♯‘𝑆)))
21 pfxlen 11176 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝑌)) = 𝑌)
2220, 21sylan2 286 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘(𝑆 prefix 𝑌)) = 𝑌)
23 swrdlen 11143 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑍𝑌))
24233expb 1207 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑍𝑌))
2522, 24oveq12d 5985 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))) = (𝑌 + (𝑍𝑌)))
26 elfzelz 10182 . . . . . . . . . 10 (𝑌 ∈ (0...𝑍) → 𝑌 ∈ ℤ)
2726zcnd 9531 . . . . . . . . 9 (𝑌 ∈ (0...𝑍) → 𝑌 ∈ ℂ)
287zcnd 9531 . . . . . . . . 9 (𝑍 ∈ (0...(♯‘𝑆)) → 𝑍 ∈ ℂ)
29 pncan3 8315 . . . . . . . . 9 ((𝑌 ∈ ℂ ∧ 𝑍 ∈ ℂ) → (𝑌 + (𝑍𝑌)) = 𝑍)
3027, 28, 29syl2an 289 . . . . . . . 8 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑌 + (𝑍𝑌)) = 𝑍)
3130adantl 277 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑌 + (𝑍𝑌)) = 𝑍)
3217, 25, 313eqtrd 2244 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = 𝑍)
3332oveq2d 5983 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))) = (0..^𝑍))
3433fneq2d 5384 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))) ↔ ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^𝑍)))
3515, 34mpbid 147 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^𝑍))
36 pfxfn 11174 . . . 4 ((𝑆 ∈ Word 𝐴𝑍 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝑍) Fn (0..^𝑍))
3736adantrl 478 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 prefix 𝑍) Fn (0..^𝑍))
38 id 19 . . . . . 6 (𝑥 ∈ (0..^𝑍) → 𝑥 ∈ (0..^𝑍))
3926ad2antrl 490 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℤ)
40 fzospliti 10335 . . . . . 6 ((𝑥 ∈ (0..^𝑍) ∧ 𝑌 ∈ ℤ) → (𝑥 ∈ (0..^𝑌) ∨ 𝑥 ∈ (𝑌..^𝑍)))
4138, 39, 40syl2anr 290 . . . . 5 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → (𝑥 ∈ (0..^𝑌) ∨ 𝑥 ∈ (𝑌..^𝑍)))
424adantr 276 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (𝑆 prefix 𝑌) ∈ Word 𝐴)
4311adantr 276 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
4422oveq2d 5983 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (0..^(♯‘(𝑆 prefix 𝑌))) = (0..^𝑌))
4544eleq2d 2277 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(♯‘(𝑆 prefix 𝑌))) ↔ 𝑥 ∈ (0..^𝑌)))
4645biimpar 297 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → 𝑥 ∈ (0..^(♯‘(𝑆 prefix 𝑌))))
47 ccatval1 11091 . . . . . . . 8 (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴𝑥 ∈ (0..^(♯‘(𝑆 prefix 𝑌)))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 prefix 𝑌)‘𝑥))
4842, 43, 46, 47syl3anc 1250 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 prefix 𝑌)‘𝑥))
4920adantl 277 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (0...(♯‘𝑆)))
50 id 19 . . . . . . . 8 (𝑥 ∈ (0..^𝑌) → 𝑥 ∈ (0..^𝑌))
51 pfxfv 11175 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑥 ∈ (0..^𝑌)) → ((𝑆 prefix 𝑌)‘𝑥) = (𝑆𝑥))
525, 49, 50, 51syl2an3an 1311 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → ((𝑆 prefix 𝑌)‘𝑥) = (𝑆𝑥))
5348, 52eqtrd 2240 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆𝑥))
544adantr 276 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑆 prefix 𝑌) ∈ Word 𝐴)
5511adantr 276 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
5625, 31eqtrd 2240 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))) = 𝑍)
5722, 56oveq12d 5985 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 prefix 𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))) = (𝑌..^𝑍))
5857eleq2d 2277 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ ((♯‘(𝑆 prefix 𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))) ↔ 𝑥 ∈ (𝑌..^𝑍)))
5958biimpar 297 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → 𝑥 ∈ ((♯‘(𝑆 prefix 𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))))
60 ccatval2 11092 . . . . . . . 8 (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴𝑥 ∈ ((♯‘(𝑆 prefix 𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 prefix 𝑌)))))
6154, 55, 59, 60syl3anc 1250 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 prefix 𝑌)))))
62 id 19 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))))
63623expb 1207 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))))
6422oveq2d 5983 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 − (♯‘(𝑆 prefix 𝑌))) = (𝑥𝑌))
6564adantr 276 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥 − (♯‘(𝑆 prefix 𝑌))) = (𝑥𝑌))
66 id 19 . . . . . . . . . . 11 (𝑥 ∈ (𝑌..^𝑍) → 𝑥 ∈ (𝑌..^𝑍))
67 fzosubel 10360 . . . . . . . . . . 11 ((𝑥 ∈ (𝑌..^𝑍) ∧ 𝑌 ∈ ℤ) → (𝑥𝑌) ∈ ((𝑌𝑌)..^(𝑍𝑌)))
6866, 39, 67syl2anr 290 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥𝑌) ∈ ((𝑌𝑌)..^(𝑍𝑌)))
6927subidd 8406 . . . . . . . . . . . . . 14 (𝑌 ∈ (0...𝑍) → (𝑌𝑌) = 0)
7069oveq1d 5982 . . . . . . . . . . . . 13 (𝑌 ∈ (0...𝑍) → ((𝑌𝑌)..^(𝑍𝑌)) = (0..^(𝑍𝑌)))
7170eleq2d 2277 . . . . . . . . . . . 12 (𝑌 ∈ (0...𝑍) → ((𝑥𝑌) ∈ ((𝑌𝑌)..^(𝑍𝑌)) ↔ (𝑥𝑌) ∈ (0..^(𝑍𝑌))))
7271ad2antrl 490 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑥𝑌) ∈ ((𝑌𝑌)..^(𝑍𝑌)) ↔ (𝑥𝑌) ∈ (0..^(𝑍𝑌))))
7372adantr 276 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥𝑌) ∈ ((𝑌𝑌)..^(𝑍𝑌)) ↔ (𝑥𝑌) ∈ (0..^(𝑍𝑌))))
7468, 73mpbid 147 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥𝑌) ∈ (0..^(𝑍𝑌)))
7565, 74eqeltrd 2284 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥 − (♯‘(𝑆 prefix 𝑌))) ∈ (0..^(𝑍𝑌)))
76 swrdfv 11144 . . . . . . . 8 (((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) ∧ (𝑥 − (♯‘(𝑆 prefix 𝑌))) ∈ (0..^(𝑍𝑌))) → ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 prefix 𝑌)))) = (𝑆‘((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌)))
7763, 75, 76syl2an2r 595 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 prefix 𝑌)))) = (𝑆‘((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌)))
7864oveq1d 5982 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌) = ((𝑥𝑌) + 𝑌))
7978adantr 276 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌) = ((𝑥𝑌) + 𝑌))
80 elfzoelz 10304 . . . . . . . . . . 11 (𝑥 ∈ (𝑌..^𝑍) → 𝑥 ∈ ℤ)
8180zcnd 9531 . . . . . . . . . 10 (𝑥 ∈ (𝑌..^𝑍) → 𝑥 ∈ ℂ)
8227ad2antrl 490 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℂ)
83 npcan 8316 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑥𝑌) + 𝑌) = 𝑥)
8481, 82, 83syl2anr 290 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥𝑌) + 𝑌) = 𝑥)
8579, 84eqtrd 2240 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌) = 𝑥)
8685fveq2d 5603 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑆‘((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌)) = (𝑆𝑥))
8761, 77, 863eqtrd 2244 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆𝑥))
8853, 87jaodan 799 . . . . 5 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ (𝑥 ∈ (0..^𝑌) ∨ 𝑥 ∈ (𝑌..^𝑍))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆𝑥))
8941, 88syldan 282 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆𝑥))
90 pfxfv 11175 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑍 ∈ (0...(♯‘𝑆)) ∧ 𝑥 ∈ (0..^𝑍)) → ((𝑆 prefix 𝑍)‘𝑥) = (𝑆𝑥))
91903expa 1206 . . . . 5 (((𝑆 ∈ Word 𝐴𝑍 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^𝑍)) → ((𝑆 prefix 𝑍)‘𝑥) = (𝑆𝑥))
9291adantlrl 482 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → ((𝑆 prefix 𝑍)‘𝑥) = (𝑆𝑥))
9389, 92eqtr4d 2243 . . 3 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 prefix 𝑍)‘𝑥))
9435, 37, 93eqfnfvd 5703 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 prefix 𝑍))
95943impb 1202 1 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 prefix 𝑍))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2178  cop 3646   Fn wfn 5285  cfv 5290  (class class class)co 5967  cc 7958  0cc0 7960   + caddc 7963  cmin 8278  0cn0 9330  cz 9407  ...cfz 10165  ..^cfzo 10299  chash 10957  Word cword 11031   ++ cconcat 11084   substr csubstr 11136   prefix cpfx 11163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-ihash 10958  df-word 11032  df-concat 11085  df-substr 11137  df-pfx 11164
This theorem is referenced by:  pfxcctswrd  11201  wrdeqs1cat  11211
  Copyright terms: Public domain W3C validator