![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > min2inf | GIF version |
Description: The minimum of two numbers is less than or equal to the second. (Contributed by Jim Kingdon, 9-Feb-2021.) |
Ref | Expression |
---|---|
min2inf | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minmax 10485 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < )) | |
2 | simpr 108 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
3 | renegcl 7645 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
4 | renegcl 7645 | . . . 4 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
5 | maxcl 10469 | . . . 4 ⊢ ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ) | |
6 | 3, 4, 5 | syl2an 283 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ) |
7 | maxle2 10471 | . . . 4 ⊢ ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → -𝐵 ≤ sup({-𝐴, -𝐵}, ℝ, < )) | |
8 | 3, 4, 7 | syl2an 283 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ≤ sup({-𝐴, -𝐵}, ℝ, < )) |
9 | 2, 6, 8 | lenegcon1d 7903 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -sup({-𝐴, -𝐵}, ℝ, < ) ≤ 𝐵) |
10 | 1, 9 | eqbrtrd 3831 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ≤ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1434 {cpr 3423 class class class wbr 3811 supcsup 6583 infcinf 6584 ℝcr 7251 < clt 7424 ≤ cle 7425 -cneg 7556 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 3999 ax-un 4223 ax-setind 4315 ax-iinf 4365 ax-cnex 7338 ax-resscn 7339 ax-1cn 7340 ax-1re 7341 ax-icn 7342 ax-addcl 7343 ax-addrcl 7344 ax-mulcl 7345 ax-mulrcl 7346 ax-addcom 7347 ax-mulcom 7348 ax-addass 7349 ax-mulass 7350 ax-distr 7351 ax-i2m1 7352 ax-0lt1 7353 ax-1rid 7354 ax-0id 7355 ax-rnegex 7356 ax-precex 7357 ax-cnre 7358 ax-pre-ltirr 7359 ax-pre-ltwlin 7360 ax-pre-lttrn 7361 ax-pre-apti 7362 ax-pre-ltadd 7363 ax-pre-mulgt0 7364 ax-pre-mulext 7365 ax-arch 7366 ax-caucvg 7367 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-if 3374 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4083 df-po 4086 df-iso 4087 df-iord 4156 df-on 4158 df-ilim 4159 df-suc 4161 df-iom 4368 df-xp 4406 df-rel 4407 df-cnv 4408 df-co 4409 df-dm 4410 df-rn 4411 df-res 4412 df-ima 4413 df-iota 4933 df-fun 4970 df-fn 4971 df-f 4972 df-f1 4973 df-fo 4974 df-f1o 4975 df-fv 4976 df-isom 4977 df-riota 5546 df-ov 5593 df-oprab 5594 df-mpt2 5595 df-1st 5845 df-2nd 5846 df-recs 6001 df-frec 6087 df-sup 6585 df-inf 6586 df-pnf 7426 df-mnf 7427 df-xr 7428 df-ltxr 7429 df-le 7430 df-sub 7557 df-neg 7558 df-reap 7951 df-ap 7958 df-div 8037 df-inn 8316 df-2 8374 df-3 8375 df-4 8376 df-n0 8565 df-z 8646 df-uz 8914 df-rp 9029 df-iseq 9740 df-iexp 9791 df-cj 10102 df-re 10103 df-im 10104 df-rsqrt 10257 df-abs 10258 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |