| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znle2 | GIF version | ||
| Description: The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| znle2.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| znle2.f | ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) |
| znle2.w | ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) |
| znle2.l | ⊢ ≤ = (le‘𝑌) |
| Ref | Expression |
|---|---|
| znle2 | ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . 3 ⊢ (RSpan‘ℤring) = (RSpan‘ℤring) | |
| 2 | eqid 2229 | . . 3 ⊢ (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) | |
| 3 | znle2.y | . . 3 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 4 | eqid 2229 | . . 3 ⊢ ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) | |
| 5 | znle2.w | . . 3 ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) | |
| 6 | znle2.l | . . 3 ⊢ ≤ = (le‘𝑌) | |
| 7 | 1, 2, 3, 4, 5, 6 | znle 14609 | . 2 ⊢ (𝑁 ∈ ℕ0 → ≤ = ((((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) ∘ ◡((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊))) |
| 8 | 1, 2, 3 | znzrh 14615 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (ℤRHom‘𝑌)) |
| 9 | 8 | reseq1d 5004 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = ((ℤRHom‘𝑌) ↾ 𝑊)) |
| 10 | znle2.f | . . . . 5 ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) | |
| 11 | 9, 10 | eqtr4di 2280 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = 𝐹) |
| 12 | 11 | coeq1d 4883 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) = (𝐹 ∘ ≤ )) |
| 13 | 11 | cnveqd 4898 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ◡((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = ◡𝐹) |
| 14 | 12, 13 | coeq12d 4886 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) ∘ ◡((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊)) = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| 15 | 7, 14 | eqtrd 2262 | 1 ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ifcif 3602 {csn 3666 ◡ccnv 4718 ↾ cres 4721 ∘ ccom 4723 ‘cfv 5318 (class class class)co 6007 0cc0 8007 ≤ cle 8190 ℕ0cn0 9377 ℤcz 9454 ..^cfzo 10346 lecple 13125 /s cqus 13341 ~QG cqg 13714 RSpancrsp 14440 ℤringczring 14562 ℤRHomczrh 14583 ℤ/nℤczn 14585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-addf 8129 ax-mulf 8130 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-ec 6690 df-map 6805 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-rp 9858 df-fz 10213 df-cj 11361 df-abs 11518 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-starv 13133 df-sca 13134 df-vsca 13135 df-ip 13136 df-tset 13137 df-ple 13138 df-ds 13140 df-unif 13141 df-0g 13299 df-topgen 13301 df-iimas 13343 df-qus 13344 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-mhm 13500 df-grp 13544 df-minusg 13545 df-subg 13715 df-eqg 13717 df-ghm 13786 df-cmn 13831 df-mgp 13892 df-ur 13931 df-ring 13969 df-cring 13970 df-rhm 14124 df-subrg 14191 df-lsp 14359 df-sra 14407 df-rgmod 14408 df-rsp 14442 df-bl 14518 df-mopn 14519 df-fg 14521 df-metu 14522 df-cnfld 14529 df-zring 14563 df-zrh 14586 df-zn 14588 |
| This theorem is referenced by: znleval 14625 |
| Copyright terms: Public domain | W3C validator |