ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znle2 GIF version

Theorem znle2 14458
Description: The ordering of the ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znle2.y 𝑌 = (ℤ/nℤ‘𝑁)
znle2.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znle2.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle2.l = (le‘𝑌)
Assertion
Ref Expression
znle2 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))

Proof of Theorem znle2
StepHypRef Expression
1 eqid 2206 . . 3 (RSpan‘ℤring) = (RSpan‘ℤring)
2 eqid 2206 . . 3 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
3 znle2.y . . 3 𝑌 = (ℤ/nℤ‘𝑁)
4 eqid 2206 . . 3 ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊)
5 znle2.w . . 3 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
6 znle2.l . . 3 = (le‘𝑌)
71, 2, 3, 4, 5, 6znle 14443 . 2 (𝑁 ∈ ℕ0 = ((((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) ∘ ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊)))
81, 2, 3znzrh 14449 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (ℤRHom‘𝑌))
98reseq1d 4963 . . . . 5 (𝑁 ∈ ℕ0 → ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = ((ℤRHom‘𝑌) ↾ 𝑊))
10 znle2.f . . . . 5 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
119, 10eqtr4di 2257 . . . 4 (𝑁 ∈ ℕ0 → ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = 𝐹)
1211coeq1d 4843 . . 3 (𝑁 ∈ ℕ0 → (((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) = (𝐹 ∘ ≤ ))
1311cnveqd 4858 . . 3 (𝑁 ∈ ℕ0((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = 𝐹)
1412, 13coeq12d 4846 . 2 (𝑁 ∈ ℕ0 → ((((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) ∘ ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊)) = ((𝐹 ∘ ≤ ) ∘ 𝐹))
157, 14eqtrd 2239 1 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  ifcif 3572  {csn 3634  ccnv 4678  cres 4681  ccom 4683  cfv 5276  (class class class)co 5951  0cc0 7932  cle 8115  0cn0 9302  cz 9379  ..^cfzo 10271  lecple 12960   /s cqus 13176   ~QG cqg 13549  RSpancrsp 14274  ringczring 14396  ℤRHomczrh 14417  ℤ/nczn 14419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-addf 8054  ax-mulf 8055
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-ec 6629  df-map 6744  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-dec 9512  df-uz 9656  df-rp 9783  df-fz 10138  df-cj 11197  df-abs 11354  df-struct 12878  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-starv 12968  df-sca 12969  df-vsca 12970  df-ip 12971  df-tset 12972  df-ple 12973  df-ds 12975  df-unif 12976  df-0g 13134  df-topgen 13136  df-iimas 13178  df-qus 13179  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-mhm 13335  df-grp 13379  df-minusg 13380  df-subg 13550  df-eqg 13552  df-ghm 13621  df-cmn 13666  df-mgp 13727  df-ur 13766  df-ring 13804  df-cring 13805  df-rhm 13958  df-subrg 14025  df-lsp 14193  df-sra 14241  df-rgmod 14242  df-rsp 14276  df-bl 14352  df-mopn 14353  df-fg 14355  df-metu 14356  df-cnfld 14363  df-zring 14397  df-zrh 14420  df-zn 14422
This theorem is referenced by:  znleval  14459
  Copyright terms: Public domain W3C validator