ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znleval GIF version

Theorem znleval 14209
Description: The ordering of the ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znle2.y 𝑌 = (ℤ/nℤ‘𝑁)
znle2.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znle2.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle2.l = (le‘𝑌)
znleval.x 𝑋 = (Base‘𝑌)
Assertion
Ref Expression
znleval (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))

Proof of Theorem znleval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 znle2.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑁)
2 znle2.f . . . . . . 7 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
3 znle2.w . . . . . . 7 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
4 znle2.l . . . . . . 7 = (le‘𝑌)
51, 2, 3, 4znle2 14208 . . . . . 6 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
6 relco 5168 . . . . . . . 8 Rel ((𝐹 ∘ ≤ ) ∘ 𝐹)
7 relssdmrn 5190 . . . . . . . 8 (Rel ((𝐹 ∘ ≤ ) ∘ 𝐹) → ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹)))
86, 7ax-mp 5 . . . . . . 7 ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹))
9 dmcoss 4935 . . . . . . . . 9 dom ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ dom 𝐹
10 df-rn 4674 . . . . . . . . . 10 ran 𝐹 = dom 𝐹
11 znleval.x . . . . . . . . . . . 12 𝑋 = (Base‘𝑌)
121, 11, 2, 3znf1o 14207 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝑋)
13 f1ofo 5511 . . . . . . . . . . 11 (𝐹:𝑊1-1-onto𝑋𝐹:𝑊onto𝑋)
14 forn 5483 . . . . . . . . . . 11 (𝐹:𝑊onto𝑋 → ran 𝐹 = 𝑋)
1512, 13, 143syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ran 𝐹 = 𝑋)
1610, 15eqtr3id 2243 . . . . . . . . 9 (𝑁 ∈ ℕ0 → dom 𝐹 = 𝑋)
179, 16sseqtrid 3233 . . . . . . . 8 (𝑁 ∈ ℕ0 → dom ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋)
18 rncoss 4936 . . . . . . . . 9 ran ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ ran (𝐹 ∘ ≤ )
19 rncoss 4936 . . . . . . . . . 10 ran (𝐹 ∘ ≤ ) ⊆ ran 𝐹
2019, 15sseqtrid 3233 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ran (𝐹 ∘ ≤ ) ⊆ 𝑋)
2118, 20sstrid 3194 . . . . . . . 8 (𝑁 ∈ ℕ0 → ran ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋)
22 xpss12 4770 . . . . . . . 8 ((dom ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋 ∧ ran ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋) → (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹)) ⊆ (𝑋 × 𝑋))
2317, 21, 22syl2anc 411 . . . . . . 7 (𝑁 ∈ ℕ0 → (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹)) ⊆ (𝑋 × 𝑋))
248, 23sstrid 3194 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ (𝑋 × 𝑋))
255, 24eqsstrd 3219 . . . . 5 (𝑁 ∈ ℕ0 ⊆ (𝑋 × 𝑋))
2625ssbrd 4076 . . . 4 (𝑁 ∈ ℕ0 → (𝐴 𝐵𝐴(𝑋 × 𝑋)𝐵))
27 brxp 4694 . . . 4 (𝐴(𝑋 × 𝑋)𝐵 ↔ (𝐴𝑋𝐵𝑋))
2826, 27imbitrdi 161 . . 3 (𝑁 ∈ ℕ0 → (𝐴 𝐵 → (𝐴𝑋𝐵𝑋)))
2928pm4.71rd 394 . 2 (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ ((𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵)))
305adantr 276 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → = ((𝐹 ∘ ≤ ) ∘ 𝐹))
3130breqd 4044 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 𝐵𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵))
32 brcog 4833 . . . . . . 7 ((𝐴𝑋𝐵𝑋) → (𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵 ↔ ∃𝑥(𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵)))
3332adantl 277 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵 ↔ ∃𝑥(𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵)))
34 eqcom 2198 . . . . . . . . 9 (𝑥 = (𝐹𝐴) ↔ (𝐹𝐴) = 𝑥)
3512adantr 276 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐹:𝑊1-1-onto𝑋)
36 f1ocnv 5517 . . . . . . . . . . 11 (𝐹:𝑊1-1-onto𝑋𝐹:𝑋1-1-onto𝑊)
37 f1ofn 5505 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑊𝐹 Fn 𝑋)
3835, 36, 373syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐹 Fn 𝑋)
39 simprl 529 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
40 fnbrfvb 5601 . . . . . . . . . 10 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝐹𝐴) = 𝑥𝐴𝐹𝑥))
4138, 39, 40syl2anc 411 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) = 𝑥𝐴𝐹𝑥))
4234, 41bitr2id 193 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐹𝑥𝑥 = (𝐹𝐴)))
4342anbi1d 465 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵)))
4443exbidv 1839 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵) ↔ ∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵)))
4533, 44bitrd 188 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵 ↔ ∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵)))
461zncrng 14201 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
47 eqid 2196 . . . . . . . . . . . . 13 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
4847zrhex 14177 . . . . . . . . . . . 12 (𝑌 ∈ CRing → (ℤRHom‘𝑌) ∈ V)
49 resexg 4986 . . . . . . . . . . . 12 ((ℤRHom‘𝑌) ∈ V → ((ℤRHom‘𝑌) ↾ 𝑊) ∈ V)
5046, 48, 493syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑌) ↾ 𝑊) ∈ V)
512, 50eqeltrid 2283 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝐹 ∈ V)
52 cnvexg 5207 . . . . . . . . . 10 (𝐹 ∈ V → 𝐹 ∈ V)
5351, 52syl 14 . . . . . . . . 9 (𝑁 ∈ ℕ0𝐹 ∈ V)
5453adantr 276 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐹 ∈ V)
55 fvexg 5577 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝐴𝑋) → (𝐹𝐴) ∈ V)
5654, 39, 55syl2anc 411 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ∈ V)
57 breq1 4036 . . . . . . . 8 (𝑥 = (𝐹𝐴) → (𝑥(𝐹 ∘ ≤ )𝐵 ↔ (𝐹𝐴)(𝐹 ∘ ≤ )𝐵))
5857ceqsexgv 2893 . . . . . . 7 ((𝐹𝐴) ∈ V → (∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝐹𝐴)(𝐹 ∘ ≤ )𝐵))
5956, 58syl 14 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝐹𝐴)(𝐹 ∘ ≤ )𝐵))
60 simprr 531 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
61 brcog 4833 . . . . . . . 8 (((𝐹𝐴) ∈ V ∧ 𝐵𝑋) → ((𝐹𝐴)(𝐹 ∘ ≤ )𝐵 ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
6256, 60, 61syl2anc 411 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)(𝐹 ∘ ≤ )𝐵 ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
63 eqcom 2198 . . . . . . . . . . . 12 (𝑥 = (𝐹𝐵) ↔ (𝐹𝐵) = 𝑥)
64 fnbrfvb 5601 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑋𝐵𝑋) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
6538, 60, 64syl2anc 411 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
6663, 65bitrid 192 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝑥 = (𝐹𝐵) ↔ 𝐵𝐹𝑥))
67 vex 2766 . . . . . . . . . . . 12 𝑥 ∈ V
68 brcnvg 4847 . . . . . . . . . . . 12 ((𝐵𝑋𝑥 ∈ V) → (𝐵𝐹𝑥𝑥𝐹𝐵))
6960, 67, 68sylancl 413 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝐹𝑥𝑥𝐹𝐵))
7066, 69bitrd 188 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝑥 = (𝐹𝐵) ↔ 𝑥𝐹𝐵))
7170anbi1d 465 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ (𝑥𝐹𝐵 ∧ (𝐹𝐴) ≤ 𝑥)))
7271biancomd 271 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ ((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
7372exbidv 1839 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
74 fvexg 5577 . . . . . . . . 9 ((𝐹 ∈ V ∧ 𝐵𝑋) → (𝐹𝐵) ∈ V)
7554, 60, 74syl2anc 411 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐵) ∈ V)
76 breq2 4037 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → ((𝐹𝐴) ≤ 𝑥 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
7776ceqsexgv 2893 . . . . . . . 8 ((𝐹𝐵) ∈ V → (∃𝑥(𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
7875, 77syl 14 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
7962, 73, 783bitr2d 216 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)(𝐹 ∘ ≤ )𝐵 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
8059, 79bitrd 188 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
8131, 45, 803bitrd 214 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 𝐵 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
8281pm5.32da 452 . . 3 (𝑁 ∈ ℕ0 → (((𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
83 df-3an 982 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵)) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐹𝐴) ≤ (𝐹𝐵)))
8482, 83bitr4di 198 . 2 (𝑁 ∈ ℕ0 → (((𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
8529, 84bitrd 188 1 (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  wss 3157  ifcif 3561   class class class wbr 4033   × cxp 4661  ccnv 4662  dom cdm 4663  ran crn 4664  cres 4665  ccom 4667  Rel wrel 4668   Fn wfn 5253  ontowfo 5256  1-1-ontowf1o 5257  cfv 5258  (class class class)co 5922  0cc0 7879  cle 8062  0cn0 9249  cz 9326  ..^cfzo 10217  Basecbs 12678  lecple 12762  CRingccrg 13553  ℤRHomczrh 14167  ℤ/nczn 14169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-tpos 6303  df-recs 6363  df-frec 6449  df-er 6592  df-ec 6594  df-qs 6598  df-map 6709  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-dec 9458  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-cj 11007  df-abs 11164  df-dvds 11953  df-struct 12680  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-starv 12770  df-sca 12771  df-vsca 12772  df-ip 12773  df-tset 12774  df-ple 12775  df-ds 12777  df-unif 12778  df-0g 12929  df-topgen 12931  df-iimas 12945  df-qus 12946  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091  df-grp 13135  df-minusg 13136  df-sbg 13137  df-mulg 13250  df-subg 13300  df-nsg 13301  df-eqg 13302  df-ghm 13371  df-cmn 13416  df-abl 13417  df-mgp 13477  df-rng 13489  df-ur 13516  df-srg 13520  df-ring 13554  df-cring 13555  df-oppr 13624  df-dvdsr 13645  df-rhm 13708  df-subrg 13775  df-lmod 13845  df-lssm 13909  df-lsp 13943  df-sra 13991  df-rgmod 13992  df-lidl 14025  df-rsp 14026  df-2idl 14056  df-bl 14102  df-mopn 14103  df-fg 14105  df-metu 14106  df-cnfld 14113  df-zring 14147  df-zrh 14170  df-zn 14172
This theorem is referenced by:  znleval2  14210
  Copyright terms: Public domain W3C validator