| Step | Hyp | Ref
| Expression |
| 1 | | znle2.y |
. . . . . . 7
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
| 2 | | znle2.f |
. . . . . . 7
⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) |
| 3 | | znle2.w |
. . . . . . 7
⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) |
| 4 | | znle2.l |
. . . . . . 7
⊢ ≤ =
(le‘𝑌) |
| 5 | 1, 2, 3, 4 | znle2 14208 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| 6 | | relco 5168 |
. . . . . . . 8
⊢ Rel
((𝐹 ∘ ≤ ) ∘
◡𝐹) |
| 7 | | relssdmrn 5190 |
. . . . . . . 8
⊢ (Rel
((𝐹 ∘ ≤ ) ∘
◡𝐹) → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ⊆ (dom ((𝐹 ∘ ≤ ) ∘ ◡𝐹) × ran ((𝐹 ∘ ≤ ) ∘ ◡𝐹))) |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . 7
⊢ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ⊆ (dom ((𝐹 ∘ ≤ ) ∘ ◡𝐹) × ran ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| 9 | | dmcoss 4935 |
. . . . . . . . 9
⊢ dom
((𝐹 ∘ ≤ ) ∘
◡𝐹) ⊆ dom ◡𝐹 |
| 10 | | df-rn 4674 |
. . . . . . . . . 10
⊢ ran 𝐹 = dom ◡𝐹 |
| 11 | | znleval.x |
. . . . . . . . . . . 12
⊢ 𝑋 = (Base‘𝑌) |
| 12 | 1, 11, 2, 3 | znf1o 14207 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ 𝐹:𝑊–1-1-onto→𝑋) |
| 13 | | f1ofo 5511 |
. . . . . . . . . . 11
⊢ (𝐹:𝑊–1-1-onto→𝑋 → 𝐹:𝑊–onto→𝑋) |
| 14 | | forn 5483 |
. . . . . . . . . . 11
⊢ (𝐹:𝑊–onto→𝑋 → ran 𝐹 = 𝑋) |
| 15 | 12, 13, 14 | 3syl 17 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ ran 𝐹 = 𝑋) |
| 16 | 10, 15 | eqtr3id 2243 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ dom ◡𝐹 = 𝑋) |
| 17 | 9, 16 | sseqtrid 3233 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ dom ((𝐹 ∘ ≤
) ∘ ◡𝐹) ⊆ 𝑋) |
| 18 | | rncoss 4936 |
. . . . . . . . 9
⊢ ran
((𝐹 ∘ ≤ ) ∘
◡𝐹) ⊆ ran (𝐹 ∘ ≤ ) |
| 19 | | rncoss 4936 |
. . . . . . . . . 10
⊢ ran
(𝐹 ∘ ≤ ) ⊆
ran 𝐹 |
| 20 | 19, 15 | sseqtrid 3233 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ ran (𝐹 ∘ ≤
) ⊆ 𝑋) |
| 21 | 18, 20 | sstrid 3194 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ran ((𝐹 ∘ ≤
) ∘ ◡𝐹) ⊆ 𝑋) |
| 22 | | xpss12 4770 |
. . . . . . . 8
⊢ ((dom
((𝐹 ∘ ≤ ) ∘
◡𝐹) ⊆ 𝑋 ∧ ran ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ⊆ 𝑋) → (dom ((𝐹 ∘ ≤ ) ∘ ◡𝐹) × ran ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) ⊆ (𝑋 × 𝑋)) |
| 23 | 17, 21, 22 | syl2anc 411 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (dom ((𝐹 ∘
≤ ) ∘ ◡𝐹) × ran ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) ⊆ (𝑋 × 𝑋)) |
| 24 | 8, 23 | sstrid 3194 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ ((𝐹 ∘ ≤ )
∘ ◡𝐹) ⊆ (𝑋 × 𝑋)) |
| 25 | 5, 24 | eqsstrd 3219 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ≤ ⊆ (𝑋 × 𝑋)) |
| 26 | 25 | ssbrd 4076 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝐴 ≤ 𝐵 → 𝐴(𝑋 × 𝑋)𝐵)) |
| 27 | | brxp 4694 |
. . . 4
⊢ (𝐴(𝑋 × 𝑋)𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
| 28 | 26, 27 | imbitrdi 161 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝐴 ≤ 𝐵 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋))) |
| 29 | 28 | pm4.71rd 394 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝐴 ≤ 𝐵 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ≤ 𝐵))) |
| 30 | 5 | adantr 276 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| 31 | 30 | breqd 4044 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴 ≤ 𝐵 ↔ 𝐴((𝐹 ∘ ≤ ) ∘ ◡𝐹)𝐵)) |
| 32 | | brcog 4833 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴((𝐹 ∘ ≤ ) ∘ ◡𝐹)𝐵 ↔ ∃𝑥(𝐴◡𝐹𝑥 ∧ 𝑥(𝐹 ∘ ≤ )𝐵))) |
| 33 | 32 | adantl 277 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴((𝐹 ∘ ≤ ) ∘ ◡𝐹)𝐵 ↔ ∃𝑥(𝐴◡𝐹𝑥 ∧ 𝑥(𝐹 ∘ ≤ )𝐵))) |
| 34 | | eqcom 2198 |
. . . . . . . . 9
⊢ (𝑥 = (◡𝐹‘𝐴) ↔ (◡𝐹‘𝐴) = 𝑥) |
| 35 | 12 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐹:𝑊–1-1-onto→𝑋) |
| 36 | | f1ocnv 5517 |
. . . . . . . . . . 11
⊢ (𝐹:𝑊–1-1-onto→𝑋 → ◡𝐹:𝑋–1-1-onto→𝑊) |
| 37 | | f1ofn 5505 |
. . . . . . . . . . 11
⊢ (◡𝐹:𝑋–1-1-onto→𝑊 → ◡𝐹 Fn 𝑋) |
| 38 | 35, 36, 37 | 3syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ◡𝐹 Fn 𝑋) |
| 39 | | simprl 529 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
| 40 | | fnbrfvb 5601 |
. . . . . . . . . 10
⊢ ((◡𝐹 Fn 𝑋 ∧ 𝐴 ∈ 𝑋) → ((◡𝐹‘𝐴) = 𝑥 ↔ 𝐴◡𝐹𝑥)) |
| 41 | 38, 39, 40 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((◡𝐹‘𝐴) = 𝑥 ↔ 𝐴◡𝐹𝑥)) |
| 42 | 34, 41 | bitr2id 193 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴◡𝐹𝑥 ↔ 𝑥 = (◡𝐹‘𝐴))) |
| 43 | 42 | anbi1d 465 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴◡𝐹𝑥 ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝑥 = (◡𝐹‘𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵))) |
| 44 | 43 | exbidv 1839 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∃𝑥(𝐴◡𝐹𝑥 ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ ∃𝑥(𝑥 = (◡𝐹‘𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵))) |
| 45 | 33, 44 | bitrd 188 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴((𝐹 ∘ ≤ ) ∘ ◡𝐹)𝐵 ↔ ∃𝑥(𝑥 = (◡𝐹‘𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵))) |
| 46 | 1 | zncrng 14201 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ 𝑌 ∈
CRing) |
| 47 | | eqid 2196 |
. . . . . . . . . . . . 13
⊢
(ℤRHom‘𝑌) = (ℤRHom‘𝑌) |
| 48 | 47 | zrhex 14177 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ CRing →
(ℤRHom‘𝑌)
∈ V) |
| 49 | | resexg 4986 |
. . . . . . . . . . . 12
⊢
((ℤRHom‘𝑌) ∈ V → ((ℤRHom‘𝑌) ↾ 𝑊) ∈ V) |
| 50 | 46, 48, 49 | 3syl 17 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ ((ℤRHom‘𝑌) ↾ 𝑊) ∈ V) |
| 51 | 2, 50 | eqeltrid 2283 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ 𝐹 ∈
V) |
| 52 | | cnvexg 5207 |
. . . . . . . . . 10
⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) |
| 53 | 51, 52 | syl 14 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ ◡𝐹 ∈ V) |
| 54 | 53 | adantr 276 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ◡𝐹 ∈ V) |
| 55 | | fvexg 5577 |
. . . . . . . 8
⊢ ((◡𝐹 ∈ V ∧ 𝐴 ∈ 𝑋) → (◡𝐹‘𝐴) ∈ V) |
| 56 | 54, 39, 55 | syl2anc 411 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (◡𝐹‘𝐴) ∈ V) |
| 57 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑥 = (◡𝐹‘𝐴) → (𝑥(𝐹 ∘ ≤ )𝐵 ↔ (◡𝐹‘𝐴)(𝐹 ∘ ≤ )𝐵)) |
| 58 | 57 | ceqsexgv 2893 |
. . . . . . 7
⊢ ((◡𝐹‘𝐴) ∈ V → (∃𝑥(𝑥 = (◡𝐹‘𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ (◡𝐹‘𝐴)(𝐹 ∘ ≤ )𝐵)) |
| 59 | 56, 58 | syl 14 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∃𝑥(𝑥 = (◡𝐹‘𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ (◡𝐹‘𝐴)(𝐹 ∘ ≤ )𝐵)) |
| 60 | | simprr 531 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
| 61 | | brcog 4833 |
. . . . . . . 8
⊢ (((◡𝐹‘𝐴) ∈ V ∧ 𝐵 ∈ 𝑋) → ((◡𝐹‘𝐴)(𝐹 ∘ ≤ )𝐵 ↔ ∃𝑥((◡𝐹‘𝐴) ≤ 𝑥 ∧ 𝑥𝐹𝐵))) |
| 62 | 56, 60, 61 | syl2anc 411 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((◡𝐹‘𝐴)(𝐹 ∘ ≤ )𝐵 ↔ ∃𝑥((◡𝐹‘𝐴) ≤ 𝑥 ∧ 𝑥𝐹𝐵))) |
| 63 | | eqcom 2198 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡𝐹‘𝐵) ↔ (◡𝐹‘𝐵) = 𝑥) |
| 64 | | fnbrfvb 5601 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 Fn 𝑋 ∧ 𝐵 ∈ 𝑋) → ((◡𝐹‘𝐵) = 𝑥 ↔ 𝐵◡𝐹𝑥)) |
| 65 | 38, 60, 64 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((◡𝐹‘𝐵) = 𝑥 ↔ 𝐵◡𝐹𝑥)) |
| 66 | 63, 65 | bitrid 192 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑥 = (◡𝐹‘𝐵) ↔ 𝐵◡𝐹𝑥)) |
| 67 | | vex 2766 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
| 68 | | brcnvg 4847 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ V) → (𝐵◡𝐹𝑥 ↔ 𝑥𝐹𝐵)) |
| 69 | 60, 67, 68 | sylancl 413 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵◡𝐹𝑥 ↔ 𝑥𝐹𝐵)) |
| 70 | 66, 69 | bitrd 188 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑥 = (◡𝐹‘𝐵) ↔ 𝑥𝐹𝐵)) |
| 71 | 70 | anbi1d 465 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝑥 = (◡𝐹‘𝐵) ∧ (◡𝐹‘𝐴) ≤ 𝑥) ↔ (𝑥𝐹𝐵 ∧ (◡𝐹‘𝐴) ≤ 𝑥))) |
| 72 | 71 | biancomd 271 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝑥 = (◡𝐹‘𝐵) ∧ (◡𝐹‘𝐴) ≤ 𝑥) ↔ ((◡𝐹‘𝐴) ≤ 𝑥 ∧ 𝑥𝐹𝐵))) |
| 73 | 72 | exbidv 1839 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∃𝑥(𝑥 = (◡𝐹‘𝐵) ∧ (◡𝐹‘𝐴) ≤ 𝑥) ↔ ∃𝑥((◡𝐹‘𝐴) ≤ 𝑥 ∧ 𝑥𝐹𝐵))) |
| 74 | | fvexg 5577 |
. . . . . . . . 9
⊢ ((◡𝐹 ∈ V ∧ 𝐵 ∈ 𝑋) → (◡𝐹‘𝐵) ∈ V) |
| 75 | 54, 60, 74 | syl2anc 411 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (◡𝐹‘𝐵) ∈ V) |
| 76 | | breq2 4037 |
. . . . . . . . 9
⊢ (𝑥 = (◡𝐹‘𝐵) → ((◡𝐹‘𝐴) ≤ 𝑥 ↔ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵))) |
| 77 | 76 | ceqsexgv 2893 |
. . . . . . . 8
⊢ ((◡𝐹‘𝐵) ∈ V → (∃𝑥(𝑥 = (◡𝐹‘𝐵) ∧ (◡𝐹‘𝐴) ≤ 𝑥) ↔ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵))) |
| 78 | 75, 77 | syl 14 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∃𝑥(𝑥 = (◡𝐹‘𝐵) ∧ (◡𝐹‘𝐴) ≤ 𝑥) ↔ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵))) |
| 79 | 62, 73, 78 | 3bitr2d 216 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((◡𝐹‘𝐴)(𝐹 ∘ ≤ )𝐵 ↔ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵))) |
| 80 | 59, 79 | bitrd 188 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∃𝑥(𝑥 = (◡𝐹‘𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵))) |
| 81 | 31, 45, 80 | 3bitrd 214 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴 ≤ 𝐵 ↔ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵))) |
| 82 | 81 | pm5.32da 452 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ≤ 𝐵) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵)))) |
| 83 | | df-3an 982 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵)) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵))) |
| 84 | 82, 83 | bitr4di 198 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ≤ 𝐵) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵)))) |
| 85 | 29, 84 | bitrd 188 |
1
⊢ (𝑁 ∈ ℕ0
→ (𝐴 ≤ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵)))) |