| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znmul | GIF version | ||
| Description: The multiplicative structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.) |
| Ref | Expression |
|---|---|
| znval2.s | ⊢ 𝑆 = (RSpan‘ℤring) |
| znval2.u | ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
| znval2.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| Ref | Expression |
|---|---|
| znmul | ⊢ (𝑁 ∈ ℕ0 → (.r‘𝑈) = (.r‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znval2.s | . 2 ⊢ 𝑆 = (RSpan‘ℤring) | |
| 2 | znval2.u | . 2 ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) | |
| 3 | znval2.y | . 2 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 4 | mulridx 12905 | . 2 ⊢ .r = Slot (.r‘ndx) | |
| 5 | mulrslid 12906 | . . 3 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 6 | 5 | simpri 113 | . 2 ⊢ (.r‘ndx) ∈ ℕ |
| 7 | plendxnmulrndx 12981 | . . 3 ⊢ (le‘ndx) ≠ (.r‘ndx) | |
| 8 | 7 | necomi 2460 | . 2 ⊢ (.r‘ndx) ≠ (le‘ndx) |
| 9 | 1, 2, 3, 4, 6, 8 | znbaslemnn 14343 | 1 ⊢ (𝑁 ∈ ℕ0 → (.r‘𝑈) = (.r‘𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 {csn 3632 ‘cfv 5270 (class class class)co 5943 ℕcn 9035 ℕ0cn0 9294 ndxcnx 12771 Slot cslot 12773 .rcmulr 12852 lecple 12858 /s cqus 13074 ~QG cqg 13447 RSpancrsp 14172 ℤringczring 14294 ℤ/nℤczn 14317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-addf 8046 ax-mulf 8047 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-tp 3640 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-ec 6621 df-map 6736 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-z 9372 df-dec 9504 df-uz 9648 df-rp 9775 df-fz 10130 df-cj 11095 df-abs 11252 df-struct 12776 df-ndx 12777 df-slot 12778 df-base 12780 df-sets 12781 df-iress 12782 df-plusg 12864 df-mulr 12865 df-starv 12866 df-sca 12867 df-vsca 12868 df-ip 12869 df-tset 12870 df-ple 12871 df-ds 12873 df-unif 12874 df-0g 13032 df-topgen 13034 df-iimas 13076 df-qus 13077 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-grp 13277 df-minusg 13278 df-subg 13448 df-eqg 13450 df-cmn 13564 df-mgp 13625 df-ur 13664 df-ring 13702 df-cring 13703 df-rhm 13856 df-subrg 13923 df-lsp 14091 df-sra 14139 df-rgmod 14140 df-rsp 14174 df-bl 14250 df-mopn 14251 df-fg 14253 df-metu 14254 df-cnfld 14261 df-zring 14295 df-zrh 14318 df-zn 14320 |
| This theorem is referenced by: znzrh 14347 zncrng 14349 |
| Copyright terms: Public domain | W3C validator |