Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2itscplem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for 2itscp 46015. (Contributed by AV, 4-Mar-2023.) |
Ref | Expression |
---|---|
2itscp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
2itscp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
2itscp.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
2itscp.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
2itscp.d | ⊢ 𝐷 = (𝑋 − 𝐴) |
2itscp.e | ⊢ 𝐸 = (𝐵 − 𝑌) |
2itscp.c | ⊢ 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)) |
Ref | Expression |
---|---|
2itscplem2 | ⊢ (𝜑 → (𝐶↑2) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2itscp.c | . . . 4 ⊢ 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)) | |
2 | 1 | oveq1i 7265 | . . 3 ⊢ (𝐶↑2) = (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝐶↑2) = (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2)) |
4 | 2itscp.d | . . . . 5 ⊢ 𝐷 = (𝑋 − 𝐴) | |
5 | 2itscp.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
6 | 5 | recnd 10934 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
7 | 2itscp.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
8 | 7 | recnd 10934 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
9 | 6, 8 | subcld 11262 | . . . . 5 ⊢ (𝜑 → (𝑋 − 𝐴) ∈ ℂ) |
10 | 4, 9 | eqeltrid 2843 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
11 | 2itscp.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
12 | 11 | recnd 10934 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
13 | 10, 12 | mulcld 10926 | . . 3 ⊢ (𝜑 → (𝐷 · 𝐵) ∈ ℂ) |
14 | 2itscp.e | . . . . 5 ⊢ 𝐸 = (𝐵 − 𝑌) | |
15 | 2itscp.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
16 | 15 | recnd 10934 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
17 | 12, 16 | subcld 11262 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝑌) ∈ ℂ) |
18 | 14, 17 | eqeltrid 2843 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
19 | 18, 8 | mulcld 10926 | . . 3 ⊢ (𝜑 → (𝐸 · 𝐴) ∈ ℂ) |
20 | binom2 13861 | . . 3 ⊢ (((𝐷 · 𝐵) ∈ ℂ ∧ (𝐸 · 𝐴) ∈ ℂ) → (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) = ((((𝐷 · 𝐵)↑2) + (2 · ((𝐷 · 𝐵) · (𝐸 · 𝐴)))) + ((𝐸 · 𝐴)↑2))) | |
21 | 13, 19, 20 | syl2anc 583 | . 2 ⊢ (𝜑 → (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) = ((((𝐷 · 𝐵)↑2) + (2 · ((𝐷 · 𝐵) · (𝐸 · 𝐴)))) + ((𝐸 · 𝐴)↑2))) |
22 | 10, 12 | sqmuld 13804 | . . . 4 ⊢ (𝜑 → ((𝐷 · 𝐵)↑2) = ((𝐷↑2) · (𝐵↑2))) |
23 | mul4r 11074 | . . . . . 6 ⊢ (((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐸 ∈ ℂ ∧ 𝐴 ∈ ℂ)) → ((𝐷 · 𝐵) · (𝐸 · 𝐴)) = ((𝐷 · 𝐴) · (𝐸 · 𝐵))) | |
24 | 10, 12, 18, 8, 23 | syl22anc 835 | . . . . 5 ⊢ (𝜑 → ((𝐷 · 𝐵) · (𝐸 · 𝐴)) = ((𝐷 · 𝐴) · (𝐸 · 𝐵))) |
25 | 24 | oveq2d 7271 | . . . 4 ⊢ (𝜑 → (2 · ((𝐷 · 𝐵) · (𝐸 · 𝐴))) = (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) |
26 | 22, 25 | oveq12d 7273 | . . 3 ⊢ (𝜑 → (((𝐷 · 𝐵)↑2) + (2 · ((𝐷 · 𝐵) · (𝐸 · 𝐴)))) = (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) |
27 | 18, 8 | sqmuld 13804 | . . 3 ⊢ (𝜑 → ((𝐸 · 𝐴)↑2) = ((𝐸↑2) · (𝐴↑2))) |
28 | 26, 27 | oveq12d 7273 | . 2 ⊢ (𝜑 → ((((𝐷 · 𝐵)↑2) + (2 · ((𝐷 · 𝐵) · (𝐸 · 𝐴)))) + ((𝐸 · 𝐴)↑2)) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))) |
29 | 3, 21, 28 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝐶↑2) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 ℝcr 10801 + caddc 10805 · cmul 10807 − cmin 11135 2c2 11958 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: 2itscplem3 46014 |
Copyright terms: Public domain | W3C validator |