| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2itscplem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for 2itscp 48819. (Contributed by AV, 4-Mar-2023.) |
| Ref | Expression |
|---|---|
| 2itscp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2itscp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 2itscp.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 2itscp.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
| 2itscp.d | ⊢ 𝐷 = (𝑋 − 𝐴) |
| 2itscp.e | ⊢ 𝐸 = (𝐵 − 𝑌) |
| 2itscp.c | ⊢ 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)) |
| Ref | Expression |
|---|---|
| 2itscplem2 | ⊢ (𝜑 → (𝐶↑2) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2itscp.c | . . . 4 ⊢ 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)) | |
| 2 | 1 | oveq1i 7356 | . . 3 ⊢ (𝐶↑2) = (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝐶↑2) = (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2)) |
| 4 | 2itscp.d | . . . . 5 ⊢ 𝐷 = (𝑋 − 𝐴) | |
| 5 | 2itscp.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 6 | 5 | recnd 11140 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 7 | 2itscp.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 8 | 7 | recnd 11140 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 9 | 6, 8 | subcld 11472 | . . . . 5 ⊢ (𝜑 → (𝑋 − 𝐴) ∈ ℂ) |
| 10 | 4, 9 | eqeltrid 2835 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 11 | 2itscp.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 12 | 11 | recnd 11140 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 13 | 10, 12 | mulcld 11132 | . . 3 ⊢ (𝜑 → (𝐷 · 𝐵) ∈ ℂ) |
| 14 | 2itscp.e | . . . . 5 ⊢ 𝐸 = (𝐵 − 𝑌) | |
| 15 | 2itscp.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
| 16 | 15 | recnd 11140 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 17 | 12, 16 | subcld 11472 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝑌) ∈ ℂ) |
| 18 | 14, 17 | eqeltrid 2835 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
| 19 | 18, 8 | mulcld 11132 | . . 3 ⊢ (𝜑 → (𝐸 · 𝐴) ∈ ℂ) |
| 20 | binom2 14124 | . . 3 ⊢ (((𝐷 · 𝐵) ∈ ℂ ∧ (𝐸 · 𝐴) ∈ ℂ) → (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) = ((((𝐷 · 𝐵)↑2) + (2 · ((𝐷 · 𝐵) · (𝐸 · 𝐴)))) + ((𝐸 · 𝐴)↑2))) | |
| 21 | 13, 19, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) = ((((𝐷 · 𝐵)↑2) + (2 · ((𝐷 · 𝐵) · (𝐸 · 𝐴)))) + ((𝐸 · 𝐴)↑2))) |
| 22 | 10, 12 | sqmuld 14065 | . . . 4 ⊢ (𝜑 → ((𝐷 · 𝐵)↑2) = ((𝐷↑2) · (𝐵↑2))) |
| 23 | mul4r 11282 | . . . . . 6 ⊢ (((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐸 ∈ ℂ ∧ 𝐴 ∈ ℂ)) → ((𝐷 · 𝐵) · (𝐸 · 𝐴)) = ((𝐷 · 𝐴) · (𝐸 · 𝐵))) | |
| 24 | 10, 12, 18, 8, 23 | syl22anc 838 | . . . . 5 ⊢ (𝜑 → ((𝐷 · 𝐵) · (𝐸 · 𝐴)) = ((𝐷 · 𝐴) · (𝐸 · 𝐵))) |
| 25 | 24 | oveq2d 7362 | . . . 4 ⊢ (𝜑 → (2 · ((𝐷 · 𝐵) · (𝐸 · 𝐴))) = (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) |
| 26 | 22, 25 | oveq12d 7364 | . . 3 ⊢ (𝜑 → (((𝐷 · 𝐵)↑2) + (2 · ((𝐷 · 𝐵) · (𝐸 · 𝐴)))) = (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) |
| 27 | 18, 8 | sqmuld 14065 | . . 3 ⊢ (𝜑 → ((𝐸 · 𝐴)↑2) = ((𝐸↑2) · (𝐴↑2))) |
| 28 | 26, 27 | oveq12d 7364 | . 2 ⊢ (𝜑 → ((((𝐷 · 𝐵)↑2) + (2 · ((𝐷 · 𝐵) · (𝐸 · 𝐴)))) + ((𝐸 · 𝐴)↑2)) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))) |
| 29 | 3, 21, 28 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝐶↑2) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 ℝcr 11005 + caddc 11009 · cmul 11011 − cmin 11344 2c2 12180 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: 2itscplem3 48818 |
| Copyright terms: Public domain | W3C validator |