![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2itscplem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for 2itscp 48515. (Contributed by AV, 4-Mar-2023.) |
Ref | Expression |
---|---|
2itscp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
2itscp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
2itscp.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
2itscp.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
2itscp.d | ⊢ 𝐷 = (𝑋 − 𝐴) |
2itscp.e | ⊢ 𝐸 = (𝐵 − 𝑌) |
2itscp.c | ⊢ 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)) |
Ref | Expression |
---|---|
2itscplem2 | ⊢ (𝜑 → (𝐶↑2) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2itscp.c | . . . 4 ⊢ 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)) | |
2 | 1 | oveq1i 7458 | . . 3 ⊢ (𝐶↑2) = (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝐶↑2) = (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2)) |
4 | 2itscp.d | . . . . 5 ⊢ 𝐷 = (𝑋 − 𝐴) | |
5 | 2itscp.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
6 | 5 | recnd 11318 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
7 | 2itscp.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
8 | 7 | recnd 11318 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
9 | 6, 8 | subcld 11647 | . . . . 5 ⊢ (𝜑 → (𝑋 − 𝐴) ∈ ℂ) |
10 | 4, 9 | eqeltrid 2848 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
11 | 2itscp.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
12 | 11 | recnd 11318 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
13 | 10, 12 | mulcld 11310 | . . 3 ⊢ (𝜑 → (𝐷 · 𝐵) ∈ ℂ) |
14 | 2itscp.e | . . . . 5 ⊢ 𝐸 = (𝐵 − 𝑌) | |
15 | 2itscp.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
16 | 15 | recnd 11318 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
17 | 12, 16 | subcld 11647 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝑌) ∈ ℂ) |
18 | 14, 17 | eqeltrid 2848 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
19 | 18, 8 | mulcld 11310 | . . 3 ⊢ (𝜑 → (𝐸 · 𝐴) ∈ ℂ) |
20 | binom2 14266 | . . 3 ⊢ (((𝐷 · 𝐵) ∈ ℂ ∧ (𝐸 · 𝐴) ∈ ℂ) → (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) = ((((𝐷 · 𝐵)↑2) + (2 · ((𝐷 · 𝐵) · (𝐸 · 𝐴)))) + ((𝐸 · 𝐴)↑2))) | |
21 | 13, 19, 20 | syl2anc 583 | . 2 ⊢ (𝜑 → (((𝐷 · 𝐵) + (𝐸 · 𝐴))↑2) = ((((𝐷 · 𝐵)↑2) + (2 · ((𝐷 · 𝐵) · (𝐸 · 𝐴)))) + ((𝐸 · 𝐴)↑2))) |
22 | 10, 12 | sqmuld 14208 | . . . 4 ⊢ (𝜑 → ((𝐷 · 𝐵)↑2) = ((𝐷↑2) · (𝐵↑2))) |
23 | mul4r 11459 | . . . . . 6 ⊢ (((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐸 ∈ ℂ ∧ 𝐴 ∈ ℂ)) → ((𝐷 · 𝐵) · (𝐸 · 𝐴)) = ((𝐷 · 𝐴) · (𝐸 · 𝐵))) | |
24 | 10, 12, 18, 8, 23 | syl22anc 838 | . . . . 5 ⊢ (𝜑 → ((𝐷 · 𝐵) · (𝐸 · 𝐴)) = ((𝐷 · 𝐴) · (𝐸 · 𝐵))) |
25 | 24 | oveq2d 7464 | . . . 4 ⊢ (𝜑 → (2 · ((𝐷 · 𝐵) · (𝐸 · 𝐴))) = (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) |
26 | 22, 25 | oveq12d 7466 | . . 3 ⊢ (𝜑 → (((𝐷 · 𝐵)↑2) + (2 · ((𝐷 · 𝐵) · (𝐸 · 𝐴)))) = (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) |
27 | 18, 8 | sqmuld 14208 | . . 3 ⊢ (𝜑 → ((𝐸 · 𝐴)↑2) = ((𝐸↑2) · (𝐴↑2))) |
28 | 26, 27 | oveq12d 7466 | . 2 ⊢ (𝜑 → ((((𝐷 · 𝐵)↑2) + (2 · ((𝐷 · 𝐵) · (𝐸 · 𝐴)))) + ((𝐸 · 𝐴)↑2)) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))) |
29 | 3, 21, 28 | 3eqtrd 2784 | 1 ⊢ (𝜑 → (𝐶↑2) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 ℝcr 11183 + caddc 11187 · cmul 11189 − cmin 11520 2c2 12348 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-exp 14113 |
This theorem is referenced by: 2itscplem3 48514 |
Copyright terms: Public domain | W3C validator |