MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqmuld Structured version   Visualization version   GIF version

Theorem sqmuld 14065
Description: Distribution of squaring over multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
expcld.1 (𝜑𝐴 ∈ ℂ)
mulexpd.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
sqmuld (𝜑 → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2)))

Proof of Theorem sqmuld
StepHypRef Expression
1 expcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 mulexpd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 sqmul 14026 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2)))
41, 2, 3syl2anc 584 1 (𝜑 → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7349  cc 11007   · cmul 11014  2c2 12183  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-seq 13909  df-exp 13969
This theorem is referenced by:  sqoddm1div8  14150  sqrtmul  15166  sqreulem  15267  bhmafibid1cn  15373  bhmafibid2cn  15374  bhmafibid1  15375  pythagtriplem1  16728  prmreclem1  16828  ipcau2  25132  csbren  25297  chordthmlem4  26743  heron  26746  quad2  26747  dquart  26761  cxp2limlem  26884  basellem8  26996  lgsdir  27241  2sqlem3  27329  2sqlem4  27330  2sqlem8  27335  2sqblem  27340  2sqmod  27345  axsegconlem9  28870  ax5seglem1  28873  ax5seglem2  28874  ax5seglem3  28876  pythagreim  32689  quad3d  32693  rrndstprj2  37811  3cubeslem2  42658  3cubeslem3r  42660  pellexlem6  42807  pell1234qrne0  42826  pell1234qrreccl  42827  pell1234qrmulcl  42828  pell14qrgt0  42832  pell14qrdich  42842  rmxyneg  42893  sqrtcval  43614  wallispi2lem1  46052  stirlinglem3  46057  stirlinglem10  46064  itscnhlc0yqe  48744  itschlc0yqe  48745  itsclc0yqsollem1  48747  itsclc0xyqsolr  48754  itsclquadb  48761  2itscplem1  48763  2itscplem2  48764  itscnhlinecirc02plem1  48767
  Copyright terms: Public domain W3C validator