| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqmuld | Structured version Visualization version GIF version | ||
| Description: Distribution of squaring over multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| mulexpd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| sqmuld | ⊢ (𝜑 → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulexpd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | sqmul 14021 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 · cmul 11006 2c2 12175 ↑cexp 13963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-seq 13904 df-exp 13964 |
| This theorem is referenced by: sqoddm1div8 14145 sqrtmul 15161 sqreulem 15262 bhmafibid1cn 15368 bhmafibid2cn 15369 bhmafibid1 15370 pythagtriplem1 16723 prmreclem1 16823 ipcau2 25156 csbren 25321 chordthmlem4 26767 heron 26770 quad2 26771 dquart 26785 cxp2limlem 26908 basellem8 27020 lgsdir 27265 2sqlem3 27353 2sqlem4 27354 2sqlem8 27359 2sqblem 27364 2sqmod 27369 axsegconlem9 28898 ax5seglem1 28901 ax5seglem2 28902 ax5seglem3 28904 pythagreim 32721 quad3d 32725 rrndstprj2 37871 3cubeslem2 42718 3cubeslem3r 42720 pellexlem6 42867 pell1234qrne0 42886 pell1234qrreccl 42887 pell1234qrmulcl 42888 pell14qrgt0 42892 pell14qrdich 42902 rmxyneg 42953 sqrtcval 43674 wallispi2lem1 46109 stirlinglem3 46114 stirlinglem10 46121 itscnhlc0yqe 48791 itschlc0yqe 48792 itsclc0yqsollem1 48794 itsclc0xyqsolr 48801 itsclquadb 48808 2itscplem1 48810 2itscplem2 48811 itscnhlinecirc02plem1 48814 |
| Copyright terms: Public domain | W3C validator |