Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2itscplem3 Structured version   Visualization version   GIF version

Theorem 2itscplem3 48811
Description: Lemma D for 2itscp 48812. (Contributed by AV, 4-Mar-2023.)
Hypotheses
Ref Expression
2itscp.a (𝜑𝐴 ∈ ℝ)
2itscp.b (𝜑𝐵 ∈ ℝ)
2itscp.x (𝜑𝑋 ∈ ℝ)
2itscp.y (𝜑𝑌 ∈ ℝ)
2itscp.d 𝐷 = (𝑋𝐴)
2itscp.e 𝐸 = (𝐵𝑌)
2itscp.c 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
2itscp.r (𝜑𝑅 ∈ ℝ)
2itscplem3.q 𝑄 = ((𝐸↑2) + (𝐷↑2))
2itscplem3.s 𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
Assertion
Ref Expression
2itscplem3 (𝜑𝑆 = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))

Proof of Theorem 2itscplem3
StepHypRef Expression
1 2itscplem3.s . . 3 𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
21a1i 11 . 2 (𝜑𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2)))
3 2itscplem3.q . . . . . 6 𝑄 = ((𝐸↑2) + (𝐷↑2))
43a1i 11 . . . . 5 (𝜑𝑄 = ((𝐸↑2) + (𝐷↑2)))
54oveq2d 7362 . . . 4 (𝜑 → ((𝑅↑2) · 𝑄) = ((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))))
6 2itscp.r . . . . . . 7 (𝜑𝑅 ∈ ℝ)
76recnd 11137 . . . . . 6 (𝜑𝑅 ∈ ℂ)
87sqcld 14048 . . . . 5 (𝜑 → (𝑅↑2) ∈ ℂ)
9 2itscp.e . . . . . . . 8 𝐸 = (𝐵𝑌)
10 2itscp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1110recnd 11137 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
12 2itscp.y . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
1312recnd 11137 . . . . . . . . 9 (𝜑𝑌 ∈ ℂ)
1411, 13subcld 11469 . . . . . . . 8 (𝜑 → (𝐵𝑌) ∈ ℂ)
159, 14eqeltrid 2835 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
1615sqcld 14048 . . . . . 6 (𝜑 → (𝐸↑2) ∈ ℂ)
17 2itscp.d . . . . . . . 8 𝐷 = (𝑋𝐴)
18 2itscp.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
1918recnd 11137 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
20 2itscp.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
2120recnd 11137 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
2219, 21subcld 11469 . . . . . . . 8 (𝜑 → (𝑋𝐴) ∈ ℂ)
2317, 22eqeltrid 2835 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
2423sqcld 14048 . . . . . 6 (𝜑 → (𝐷↑2) ∈ ℂ)
2516, 24addcld 11128 . . . . 5 (𝜑 → ((𝐸↑2) + (𝐷↑2)) ∈ ℂ)
268, 25mulcomd 11130 . . . 4 (𝜑 → ((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) = (((𝐸↑2) + (𝐷↑2)) · (𝑅↑2)))
2716, 24, 8adddird 11134 . . . 4 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · (𝑅↑2)) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))))
285, 26, 273eqtrd 2770 . . 3 (𝜑 → ((𝑅↑2) · 𝑄) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))))
29 2itscp.c . . . 4 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
3020, 10, 18, 12, 17, 9, 292itscplem2 48810 . . 3 (𝜑 → (𝐶↑2) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2))))
3128, 30oveq12d 7364 . 2 (𝜑 → (((𝑅↑2) · 𝑄) − (𝐶↑2)) = ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))))
3216, 8mulcld 11129 . . . . . . . 8 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)
3324, 8mulcld 11129 . . . . . . . 8 (𝜑 → ((𝐷↑2) · (𝑅↑2)) ∈ ℂ)
3432, 33addcld 11128 . . . . . . 7 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) ∈ ℂ)
3511sqcld 14048 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℂ)
3624, 35mulcld 11129 . . . . . . 7 (𝜑 → ((𝐷↑2) · (𝐵↑2)) ∈ ℂ)
37 2cnd 12200 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
3823, 21mulcld 11129 . . . . . . . . 9 (𝜑 → (𝐷 · 𝐴) ∈ ℂ)
3915, 11mulcld 11129 . . . . . . . . 9 (𝜑 → (𝐸 · 𝐵) ∈ ℂ)
4038, 39mulcld 11129 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐴) · (𝐸 · 𝐵)) ∈ ℂ)
4137, 40mulcld 11129 . . . . . . 7 (𝜑 → (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))) ∈ ℂ)
4234, 36, 41subsub4d 11500 . . . . . 6 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))))
4342eqcomd 2737 . . . . 5 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) = (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
4443oveq1d 7361 . . . 4 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) − ((𝐸↑2) · (𝐴↑2))) = ((((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) − ((𝐸↑2) · (𝐴↑2))))
4534, 36subcld 11469 . . . . 5 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) ∈ ℂ)
4621sqcld 14048 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℂ)
4716, 46mulcld 11129 . . . . 5 (𝜑 → ((𝐸↑2) · (𝐴↑2)) ∈ ℂ)
4845, 41, 47sub32d 11501 . . . 4 (𝜑 → ((((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) − ((𝐸↑2) · (𝐴↑2))) = ((((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − ((𝐸↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
4944, 48eqtrd 2766 . . 3 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) − ((𝐸↑2) · (𝐴↑2))) = ((((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − ((𝐸↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
5036, 41addcld 11128 . . . 4 (𝜑 → (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) ∈ ℂ)
5134, 50, 47subsub4d 11500 . . 3 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) − ((𝐸↑2) · (𝐴↑2))) = ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))))
5232, 33, 36addsubassd 11489 . . . . . . 7 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) = (((𝐸↑2) · (𝑅↑2)) + (((𝐷↑2) · (𝑅↑2)) − ((𝐷↑2) · (𝐵↑2)))))
5324, 8, 35subdid 11570 . . . . . . . . 9 (𝜑 → ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2))) = (((𝐷↑2) · (𝑅↑2)) − ((𝐷↑2) · (𝐵↑2))))
5453eqcomd 2737 . . . . . . . 8 (𝜑 → (((𝐷↑2) · (𝑅↑2)) − ((𝐷↑2) · (𝐵↑2))) = ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2))))
5554oveq2d 7362 . . . . . . 7 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + (((𝐷↑2) · (𝑅↑2)) − ((𝐷↑2) · (𝐵↑2)))) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))))
5652, 55eqtrd 2766 . . . . . 6 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))))
5756oveq1d 7361 . . . . 5 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − ((𝐸↑2) · (𝐴↑2))) = ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − ((𝐸↑2) · (𝐴↑2))))
588, 35subcld 11469 . . . . . . 7 (𝜑 → ((𝑅↑2) − (𝐵↑2)) ∈ ℂ)
5924, 58mulcld 11129 . . . . . 6 (𝜑 → ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2))) ∈ ℂ)
6032, 59, 47addsubd 11490 . . . . 5 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − ((𝐸↑2) · (𝐴↑2))) = ((((𝐸↑2) · (𝑅↑2)) − ((𝐸↑2) · (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))))
6116, 8, 46subdid 11570 . . . . . . 7 (𝜑 → ((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) = (((𝐸↑2) · (𝑅↑2)) − ((𝐸↑2) · (𝐴↑2))))
6261eqcomd 2737 . . . . . 6 (𝜑 → (((𝐸↑2) · (𝑅↑2)) − ((𝐸↑2) · (𝐴↑2))) = ((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))))
6362oveq1d 7361 . . . . 5 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) − ((𝐸↑2) · (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) = (((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))))
6457, 60, 633eqtrd 2770 . . . 4 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − ((𝐸↑2) · (𝐴↑2))) = (((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))))
6564oveq1d 7361 . . 3 (𝜑 → ((((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − ((𝐸↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
6649, 51, 653eqtr3d 2774 . 2 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))) = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
672, 31, 663eqtrd 2770 1 (𝜑𝑆 = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11001  cr 11002   + caddc 11006   · cmul 11008  cmin 11341  2c2 12177  cexp 13965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-seq 13906  df-exp 13966
This theorem is referenced by:  2itscp  48812
  Copyright terms: Public domain W3C validator