Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2itscplem3 Structured version   Visualization version   GIF version

Theorem 2itscplem3 48630
Description: Lemma D for 2itscp 48631. (Contributed by AV, 4-Mar-2023.)
Hypotheses
Ref Expression
2itscp.a (𝜑𝐴 ∈ ℝ)
2itscp.b (𝜑𝐵 ∈ ℝ)
2itscp.x (𝜑𝑋 ∈ ℝ)
2itscp.y (𝜑𝑌 ∈ ℝ)
2itscp.d 𝐷 = (𝑋𝐴)
2itscp.e 𝐸 = (𝐵𝑌)
2itscp.c 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
2itscp.r (𝜑𝑅 ∈ ℝ)
2itscplem3.q 𝑄 = ((𝐸↑2) + (𝐷↑2))
2itscplem3.s 𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
Assertion
Ref Expression
2itscplem3 (𝜑𝑆 = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))

Proof of Theorem 2itscplem3
StepHypRef Expression
1 2itscplem3.s . . 3 𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
21a1i 11 . 2 (𝜑𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2)))
3 2itscplem3.q . . . . . 6 𝑄 = ((𝐸↑2) + (𝐷↑2))
43a1i 11 . . . . 5 (𝜑𝑄 = ((𝐸↑2) + (𝐷↑2)))
54oveq2d 7447 . . . 4 (𝜑 → ((𝑅↑2) · 𝑄) = ((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))))
6 2itscp.r . . . . . . 7 (𝜑𝑅 ∈ ℝ)
76recnd 11287 . . . . . 6 (𝜑𝑅 ∈ ℂ)
87sqcld 14181 . . . . 5 (𝜑 → (𝑅↑2) ∈ ℂ)
9 2itscp.e . . . . . . . 8 𝐸 = (𝐵𝑌)
10 2itscp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1110recnd 11287 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
12 2itscp.y . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
1312recnd 11287 . . . . . . . . 9 (𝜑𝑌 ∈ ℂ)
1411, 13subcld 11618 . . . . . . . 8 (𝜑 → (𝐵𝑌) ∈ ℂ)
159, 14eqeltrid 2843 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
1615sqcld 14181 . . . . . 6 (𝜑 → (𝐸↑2) ∈ ℂ)
17 2itscp.d . . . . . . . 8 𝐷 = (𝑋𝐴)
18 2itscp.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
1918recnd 11287 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
20 2itscp.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
2120recnd 11287 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
2219, 21subcld 11618 . . . . . . . 8 (𝜑 → (𝑋𝐴) ∈ ℂ)
2317, 22eqeltrid 2843 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
2423sqcld 14181 . . . . . 6 (𝜑 → (𝐷↑2) ∈ ℂ)
2516, 24addcld 11278 . . . . 5 (𝜑 → ((𝐸↑2) + (𝐷↑2)) ∈ ℂ)
268, 25mulcomd 11280 . . . 4 (𝜑 → ((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) = (((𝐸↑2) + (𝐷↑2)) · (𝑅↑2)))
2716, 24, 8adddird 11284 . . . 4 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · (𝑅↑2)) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))))
285, 26, 273eqtrd 2779 . . 3 (𝜑 → ((𝑅↑2) · 𝑄) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))))
29 2itscp.c . . . 4 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
3020, 10, 18, 12, 17, 9, 292itscplem2 48629 . . 3 (𝜑 → (𝐶↑2) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2))))
3128, 30oveq12d 7449 . 2 (𝜑 → (((𝑅↑2) · 𝑄) − (𝐶↑2)) = ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))))
3216, 8mulcld 11279 . . . . . . . 8 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)
3324, 8mulcld 11279 . . . . . . . 8 (𝜑 → ((𝐷↑2) · (𝑅↑2)) ∈ ℂ)
3432, 33addcld 11278 . . . . . . 7 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) ∈ ℂ)
3511sqcld 14181 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℂ)
3624, 35mulcld 11279 . . . . . . 7 (𝜑 → ((𝐷↑2) · (𝐵↑2)) ∈ ℂ)
37 2cnd 12342 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
3823, 21mulcld 11279 . . . . . . . . 9 (𝜑 → (𝐷 · 𝐴) ∈ ℂ)
3915, 11mulcld 11279 . . . . . . . . 9 (𝜑 → (𝐸 · 𝐵) ∈ ℂ)
4038, 39mulcld 11279 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐴) · (𝐸 · 𝐵)) ∈ ℂ)
4137, 40mulcld 11279 . . . . . . 7 (𝜑 → (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))) ∈ ℂ)
4234, 36, 41subsub4d 11649 . . . . . 6 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))))
4342eqcomd 2741 . . . . 5 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) = (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
4443oveq1d 7446 . . . 4 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) − ((𝐸↑2) · (𝐴↑2))) = ((((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) − ((𝐸↑2) · (𝐴↑2))))
4534, 36subcld 11618 . . . . 5 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) ∈ ℂ)
4621sqcld 14181 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℂ)
4716, 46mulcld 11279 . . . . 5 (𝜑 → ((𝐸↑2) · (𝐴↑2)) ∈ ℂ)
4845, 41, 47sub32d 11650 . . . 4 (𝜑 → ((((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) − ((𝐸↑2) · (𝐴↑2))) = ((((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − ((𝐸↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
4944, 48eqtrd 2775 . . 3 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) − ((𝐸↑2) · (𝐴↑2))) = ((((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − ((𝐸↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
5036, 41addcld 11278 . . . 4 (𝜑 → (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) ∈ ℂ)
5134, 50, 47subsub4d 11649 . . 3 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) − ((𝐸↑2) · (𝐴↑2))) = ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))))
5232, 33, 36addsubassd 11638 . . . . . . 7 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) = (((𝐸↑2) · (𝑅↑2)) + (((𝐷↑2) · (𝑅↑2)) − ((𝐷↑2) · (𝐵↑2)))))
5324, 8, 35subdid 11717 . . . . . . . . 9 (𝜑 → ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2))) = (((𝐷↑2) · (𝑅↑2)) − ((𝐷↑2) · (𝐵↑2))))
5453eqcomd 2741 . . . . . . . 8 (𝜑 → (((𝐷↑2) · (𝑅↑2)) − ((𝐷↑2) · (𝐵↑2))) = ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2))))
5554oveq2d 7447 . . . . . . 7 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + (((𝐷↑2) · (𝑅↑2)) − ((𝐷↑2) · (𝐵↑2)))) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))))
5652, 55eqtrd 2775 . . . . . 6 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))))
5756oveq1d 7446 . . . . 5 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − ((𝐸↑2) · (𝐴↑2))) = ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − ((𝐸↑2) · (𝐴↑2))))
588, 35subcld 11618 . . . . . . 7 (𝜑 → ((𝑅↑2) − (𝐵↑2)) ∈ ℂ)
5924, 58mulcld 11279 . . . . . 6 (𝜑 → ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2))) ∈ ℂ)
6032, 59, 47addsubd 11639 . . . . 5 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − ((𝐸↑2) · (𝐴↑2))) = ((((𝐸↑2) · (𝑅↑2)) − ((𝐸↑2) · (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))))
6116, 8, 46subdid 11717 . . . . . . 7 (𝜑 → ((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) = (((𝐸↑2) · (𝑅↑2)) − ((𝐸↑2) · (𝐴↑2))))
6261eqcomd 2741 . . . . . 6 (𝜑 → (((𝐸↑2) · (𝑅↑2)) − ((𝐸↑2) · (𝐴↑2))) = ((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))))
6362oveq1d 7446 . . . . 5 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) − ((𝐸↑2) · (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) = (((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))))
6457, 60, 633eqtrd 2779 . . . 4 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − ((𝐸↑2) · (𝐴↑2))) = (((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))))
6564oveq1d 7446 . . 3 (𝜑 → ((((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − ((𝐸↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
6649, 51, 653eqtr3d 2783 . 2 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))) = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
672, 31, 663eqtrd 2779 1 (𝜑𝑆 = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151  cr 11152   + caddc 11156   · cmul 11158  cmin 11490  2c2 12319  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-exp 14100
This theorem is referenced by:  2itscp  48631
  Copyright terms: Public domain W3C validator