Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2itscplem3 Structured version   Visualization version   GIF version

Theorem 2itscplem3 48905
Description: Lemma D for 2itscp 48906. (Contributed by AV, 4-Mar-2023.)
Hypotheses
Ref Expression
2itscp.a (𝜑𝐴 ∈ ℝ)
2itscp.b (𝜑𝐵 ∈ ℝ)
2itscp.x (𝜑𝑋 ∈ ℝ)
2itscp.y (𝜑𝑌 ∈ ℝ)
2itscp.d 𝐷 = (𝑋𝐴)
2itscp.e 𝐸 = (𝐵𝑌)
2itscp.c 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
2itscp.r (𝜑𝑅 ∈ ℝ)
2itscplem3.q 𝑄 = ((𝐸↑2) + (𝐷↑2))
2itscplem3.s 𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
Assertion
Ref Expression
2itscplem3 (𝜑𝑆 = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))

Proof of Theorem 2itscplem3
StepHypRef Expression
1 2itscplem3.s . . 3 𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
21a1i 11 . 2 (𝜑𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2)))
3 2itscplem3.q . . . . . 6 𝑄 = ((𝐸↑2) + (𝐷↑2))
43a1i 11 . . . . 5 (𝜑𝑄 = ((𝐸↑2) + (𝐷↑2)))
54oveq2d 7368 . . . 4 (𝜑 → ((𝑅↑2) · 𝑄) = ((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))))
6 2itscp.r . . . . . . 7 (𝜑𝑅 ∈ ℝ)
76recnd 11147 . . . . . 6 (𝜑𝑅 ∈ ℂ)
87sqcld 14053 . . . . 5 (𝜑 → (𝑅↑2) ∈ ℂ)
9 2itscp.e . . . . . . . 8 𝐸 = (𝐵𝑌)
10 2itscp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1110recnd 11147 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
12 2itscp.y . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
1312recnd 11147 . . . . . . . . 9 (𝜑𝑌 ∈ ℂ)
1411, 13subcld 11479 . . . . . . . 8 (𝜑 → (𝐵𝑌) ∈ ℂ)
159, 14eqeltrid 2837 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
1615sqcld 14053 . . . . . 6 (𝜑 → (𝐸↑2) ∈ ℂ)
17 2itscp.d . . . . . . . 8 𝐷 = (𝑋𝐴)
18 2itscp.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
1918recnd 11147 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
20 2itscp.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
2120recnd 11147 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
2219, 21subcld 11479 . . . . . . . 8 (𝜑 → (𝑋𝐴) ∈ ℂ)
2317, 22eqeltrid 2837 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
2423sqcld 14053 . . . . . 6 (𝜑 → (𝐷↑2) ∈ ℂ)
2516, 24addcld 11138 . . . . 5 (𝜑 → ((𝐸↑2) + (𝐷↑2)) ∈ ℂ)
268, 25mulcomd 11140 . . . 4 (𝜑 → ((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) = (((𝐸↑2) + (𝐷↑2)) · (𝑅↑2)))
2716, 24, 8adddird 11144 . . . 4 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · (𝑅↑2)) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))))
285, 26, 273eqtrd 2772 . . 3 (𝜑 → ((𝑅↑2) · 𝑄) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))))
29 2itscp.c . . . 4 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
3020, 10, 18, 12, 17, 9, 292itscplem2 48904 . . 3 (𝜑 → (𝐶↑2) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2))))
3128, 30oveq12d 7370 . 2 (𝜑 → (((𝑅↑2) · 𝑄) − (𝐶↑2)) = ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))))
3216, 8mulcld 11139 . . . . . . . 8 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)
3324, 8mulcld 11139 . . . . . . . 8 (𝜑 → ((𝐷↑2) · (𝑅↑2)) ∈ ℂ)
3432, 33addcld 11138 . . . . . . 7 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) ∈ ℂ)
3511sqcld 14053 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℂ)
3624, 35mulcld 11139 . . . . . . 7 (𝜑 → ((𝐷↑2) · (𝐵↑2)) ∈ ℂ)
37 2cnd 12210 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
3823, 21mulcld 11139 . . . . . . . . 9 (𝜑 → (𝐷 · 𝐴) ∈ ℂ)
3915, 11mulcld 11139 . . . . . . . . 9 (𝜑 → (𝐸 · 𝐵) ∈ ℂ)
4038, 39mulcld 11139 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐴) · (𝐸 · 𝐵)) ∈ ℂ)
4137, 40mulcld 11139 . . . . . . 7 (𝜑 → (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))) ∈ ℂ)
4234, 36, 41subsub4d 11510 . . . . . 6 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))))
4342eqcomd 2739 . . . . 5 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) = (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
4443oveq1d 7367 . . . 4 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) − ((𝐸↑2) · (𝐴↑2))) = ((((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) − ((𝐸↑2) · (𝐴↑2))))
4534, 36subcld 11479 . . . . 5 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) ∈ ℂ)
4621sqcld 14053 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℂ)
4716, 46mulcld 11139 . . . . 5 (𝜑 → ((𝐸↑2) · (𝐴↑2)) ∈ ℂ)
4845, 41, 47sub32d 11511 . . . 4 (𝜑 → ((((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) − ((𝐸↑2) · (𝐴↑2))) = ((((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − ((𝐸↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
4944, 48eqtrd 2768 . . 3 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) − ((𝐸↑2) · (𝐴↑2))) = ((((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − ((𝐸↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
5036, 41addcld 11138 . . . 4 (𝜑 → (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) ∈ ℂ)
5134, 50, 47subsub4d 11510 . . 3 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) − ((𝐸↑2) · (𝐴↑2))) = ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))))
5232, 33, 36addsubassd 11499 . . . . . . 7 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) = (((𝐸↑2) · (𝑅↑2)) + (((𝐷↑2) · (𝑅↑2)) − ((𝐷↑2) · (𝐵↑2)))))
5324, 8, 35subdid 11580 . . . . . . . . 9 (𝜑 → ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2))) = (((𝐷↑2) · (𝑅↑2)) − ((𝐷↑2) · (𝐵↑2))))
5453eqcomd 2739 . . . . . . . 8 (𝜑 → (((𝐷↑2) · (𝑅↑2)) − ((𝐷↑2) · (𝐵↑2))) = ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2))))
5554oveq2d 7368 . . . . . . 7 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + (((𝐷↑2) · (𝑅↑2)) − ((𝐷↑2) · (𝐵↑2)))) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))))
5652, 55eqtrd 2768 . . . . . 6 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))))
5756oveq1d 7367 . . . . 5 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − ((𝐸↑2) · (𝐴↑2))) = ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − ((𝐸↑2) · (𝐴↑2))))
588, 35subcld 11479 . . . . . . 7 (𝜑 → ((𝑅↑2) − (𝐵↑2)) ∈ ℂ)
5924, 58mulcld 11139 . . . . . 6 (𝜑 → ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2))) ∈ ℂ)
6032, 59, 47addsubd 11500 . . . . 5 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − ((𝐸↑2) · (𝐴↑2))) = ((((𝐸↑2) · (𝑅↑2)) − ((𝐸↑2) · (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))))
6116, 8, 46subdid 11580 . . . . . . 7 (𝜑 → ((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) = (((𝐸↑2) · (𝑅↑2)) − ((𝐸↑2) · (𝐴↑2))))
6261eqcomd 2739 . . . . . 6 (𝜑 → (((𝐸↑2) · (𝑅↑2)) − ((𝐸↑2) · (𝐴↑2))) = ((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))))
6362oveq1d 7367 . . . . 5 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) − ((𝐸↑2) · (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) = (((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))))
6457, 60, 633eqtrd 2772 . . . 4 (𝜑 → (((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − ((𝐸↑2) · (𝐴↑2))) = (((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))))
6564oveq1d 7367 . . 3 (𝜑 → ((((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((𝐷↑2) · (𝐵↑2))) − ((𝐸↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
6649, 51, 653eqtr3d 2776 . 2 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))) = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
672, 31, 663eqtrd 2772 1 (𝜑𝑆 = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  (class class class)co 7352  cc 11011  cr 11012   + caddc 11016   · cmul 11018  cmin 11351  2c2 12187  cexp 13970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-seq 13911  df-exp 13971
This theorem is referenced by:  2itscp  48906
  Copyright terms: Public domain W3C validator