Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2itscplem1 Structured version   Visualization version   GIF version

Theorem 2itscplem1 48512
Description: Lemma 1 for 2itscp 48515. (Contributed by AV, 4-Mar-2023.)
Hypotheses
Ref Expression
2itscp.a (𝜑𝐴 ∈ ℝ)
2itscp.b (𝜑𝐵 ∈ ℝ)
2itscp.x (𝜑𝑋 ∈ ℝ)
2itscp.y (𝜑𝑌 ∈ ℝ)
2itscp.d 𝐷 = (𝑋𝐴)
2itscp.e 𝐸 = (𝐵𝑌)
Assertion
Ref Expression
2itscplem1 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2))

Proof of Theorem 2itscplem1
StepHypRef Expression
1 2itscp.e . . . . . . 7 𝐸 = (𝐵𝑌)
2 2itscp.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
32recnd 11318 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
4 2itscp.y . . . . . . . . 9 (𝜑𝑌 ∈ ℝ)
54recnd 11318 . . . . . . . 8 (𝜑𝑌 ∈ ℂ)
63, 5subcld 11647 . . . . . . 7 (𝜑 → (𝐵𝑌) ∈ ℂ)
71, 6eqeltrid 2848 . . . . . 6 (𝜑𝐸 ∈ ℂ)
87sqcld 14194 . . . . 5 (𝜑 → (𝐸↑2) ∈ ℂ)
93sqcld 14194 . . . . 5 (𝜑 → (𝐵↑2) ∈ ℂ)
108, 9mulcld 11310 . . . 4 (𝜑 → ((𝐸↑2) · (𝐵↑2)) ∈ ℂ)
11 2itscp.d . . . . . . 7 𝐷 = (𝑋𝐴)
12 2itscp.x . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
1312recnd 11318 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
14 2itscp.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1514recnd 11318 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1613, 15subcld 11647 . . . . . . 7 (𝜑 → (𝑋𝐴) ∈ ℂ)
1711, 16eqeltrid 2848 . . . . . 6 (𝜑𝐷 ∈ ℂ)
1817sqcld 14194 . . . . 5 (𝜑 → (𝐷↑2) ∈ ℂ)
1915sqcld 14194 . . . . 5 (𝜑 → (𝐴↑2) ∈ ℂ)
2018, 19mulcld 11310 . . . 4 (𝜑 → ((𝐷↑2) · (𝐴↑2)) ∈ ℂ)
21 2cnd 12371 . . . . 5 (𝜑 → 2 ∈ ℂ)
2217, 15mulcld 11310 . . . . . 6 (𝜑 → (𝐷 · 𝐴) ∈ ℂ)
237, 3mulcld 11310 . . . . . 6 (𝜑 → (𝐸 · 𝐵) ∈ ℂ)
2422, 23mulcld 11310 . . . . 5 (𝜑 → ((𝐷 · 𝐴) · (𝐸 · 𝐵)) ∈ ℂ)
2521, 24mulcld 11310 . . . 4 (𝜑 → (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))) ∈ ℂ)
2610, 20, 25addsubassd 11667 . . 3 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐸↑2) · (𝐵↑2)) + (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))))
2720, 25subcld 11647 . . . 4 (𝜑 → (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) ∈ ℂ)
2810, 27addcomd 11492 . . 3 (𝜑 → (((𝐸↑2) · (𝐵↑2)) + (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) = ((((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐵↑2))))
2917, 15sqmuld 14208 . . . . . 6 (𝜑 → ((𝐷 · 𝐴)↑2) = ((𝐷↑2) · (𝐴↑2)))
3029eqcomd 2746 . . . . 5 (𝜑 → ((𝐷↑2) · (𝐴↑2)) = ((𝐷 · 𝐴)↑2))
3130oveq1d 7463 . . . 4 (𝜑 → (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
327, 3sqmuld 14208 . . . . 5 (𝜑 → ((𝐸 · 𝐵)↑2) = ((𝐸↑2) · (𝐵↑2)))
3332eqcomd 2746 . . . 4 (𝜑 → ((𝐸↑2) · (𝐵↑2)) = ((𝐸 · 𝐵)↑2))
3431, 33oveq12d 7466 . . 3 (𝜑 → ((((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐵↑2))) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
3526, 28, 343eqtrd 2784 . 2 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
36 binom2sub 14269 . . 3 (((𝐷 · 𝐴) ∈ ℂ ∧ (𝐸 · 𝐵) ∈ ℂ) → (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
3722, 23, 36syl2anc 583 . 2 (𝜑 → (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
3835, 37eqtr4d 2783 1 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  (class class class)co 7448  cc 11182  cr 11183   + caddc 11187   · cmul 11189  cmin 11520  2c2 12348  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-exp 14113
This theorem is referenced by:  2itscp  48515
  Copyright terms: Public domain W3C validator