Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2itscplem1 Structured version   Visualization version   GIF version

Theorem 2itscplem1 45557
Description: Lemma 1 for 2itscp 45560. (Contributed by AV, 4-Mar-2023.)
Hypotheses
Ref Expression
2itscp.a (𝜑𝐴 ∈ ℝ)
2itscp.b (𝜑𝐵 ∈ ℝ)
2itscp.x (𝜑𝑋 ∈ ℝ)
2itscp.y (𝜑𝑌 ∈ ℝ)
2itscp.d 𝐷 = (𝑋𝐴)
2itscp.e 𝐸 = (𝐵𝑌)
Assertion
Ref Expression
2itscplem1 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2))

Proof of Theorem 2itscplem1
StepHypRef Expression
1 2itscp.e . . . . . . 7 𝐸 = (𝐵𝑌)
2 2itscp.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
32recnd 10707 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
4 2itscp.y . . . . . . . . 9 (𝜑𝑌 ∈ ℝ)
54recnd 10707 . . . . . . . 8 (𝜑𝑌 ∈ ℂ)
63, 5subcld 11035 . . . . . . 7 (𝜑 → (𝐵𝑌) ∈ ℂ)
71, 6eqeltrid 2856 . . . . . 6 (𝜑𝐸 ∈ ℂ)
87sqcld 13558 . . . . 5 (𝜑 → (𝐸↑2) ∈ ℂ)
93sqcld 13558 . . . . 5 (𝜑 → (𝐵↑2) ∈ ℂ)
108, 9mulcld 10699 . . . 4 (𝜑 → ((𝐸↑2) · (𝐵↑2)) ∈ ℂ)
11 2itscp.d . . . . . . 7 𝐷 = (𝑋𝐴)
12 2itscp.x . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
1312recnd 10707 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
14 2itscp.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1514recnd 10707 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1613, 15subcld 11035 . . . . . . 7 (𝜑 → (𝑋𝐴) ∈ ℂ)
1711, 16eqeltrid 2856 . . . . . 6 (𝜑𝐷 ∈ ℂ)
1817sqcld 13558 . . . . 5 (𝜑 → (𝐷↑2) ∈ ℂ)
1915sqcld 13558 . . . . 5 (𝜑 → (𝐴↑2) ∈ ℂ)
2018, 19mulcld 10699 . . . 4 (𝜑 → ((𝐷↑2) · (𝐴↑2)) ∈ ℂ)
21 2cnd 11752 . . . . 5 (𝜑 → 2 ∈ ℂ)
2217, 15mulcld 10699 . . . . . 6 (𝜑 → (𝐷 · 𝐴) ∈ ℂ)
237, 3mulcld 10699 . . . . . 6 (𝜑 → (𝐸 · 𝐵) ∈ ℂ)
2422, 23mulcld 10699 . . . . 5 (𝜑 → ((𝐷 · 𝐴) · (𝐸 · 𝐵)) ∈ ℂ)
2521, 24mulcld 10699 . . . 4 (𝜑 → (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))) ∈ ℂ)
2610, 20, 25addsubassd 11055 . . 3 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐸↑2) · (𝐵↑2)) + (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))))
2720, 25subcld 11035 . . . 4 (𝜑 → (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) ∈ ℂ)
2810, 27addcomd 10880 . . 3 (𝜑 → (((𝐸↑2) · (𝐵↑2)) + (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) = ((((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐵↑2))))
2917, 15sqmuld 13572 . . . . . 6 (𝜑 → ((𝐷 · 𝐴)↑2) = ((𝐷↑2) · (𝐴↑2)))
3029eqcomd 2764 . . . . 5 (𝜑 → ((𝐷↑2) · (𝐴↑2)) = ((𝐷 · 𝐴)↑2))
3130oveq1d 7165 . . . 4 (𝜑 → (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
327, 3sqmuld 13572 . . . . 5 (𝜑 → ((𝐸 · 𝐵)↑2) = ((𝐸↑2) · (𝐵↑2)))
3332eqcomd 2764 . . . 4 (𝜑 → ((𝐸↑2) · (𝐵↑2)) = ((𝐸 · 𝐵)↑2))
3431, 33oveq12d 7168 . . 3 (𝜑 → ((((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐵↑2))) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
3526, 28, 343eqtrd 2797 . 2 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
36 binom2sub 13631 . . 3 (((𝐷 · 𝐴) ∈ ℂ ∧ (𝐸 · 𝐵) ∈ ℂ) → (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
3722, 23, 36syl2anc 587 . 2 (𝜑 → (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
3835, 37eqtr4d 2796 1 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  (class class class)co 7150  cc 10573  cr 10574   + caddc 10578   · cmul 10580  cmin 10908  2c2 11729  cexp 13479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-n0 11935  df-z 12021  df-uz 12283  df-seq 13419  df-exp 13480
This theorem is referenced by:  2itscp  45560
  Copyright terms: Public domain W3C validator