Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2itscplem1 Structured version   Visualization version   GIF version

Theorem 2itscplem1 48764
Description: Lemma 1 for 2itscp 48767. (Contributed by AV, 4-Mar-2023.)
Hypotheses
Ref Expression
2itscp.a (𝜑𝐴 ∈ ℝ)
2itscp.b (𝜑𝐵 ∈ ℝ)
2itscp.x (𝜑𝑋 ∈ ℝ)
2itscp.y (𝜑𝑌 ∈ ℝ)
2itscp.d 𝐷 = (𝑋𝐴)
2itscp.e 𝐸 = (𝐵𝑌)
Assertion
Ref Expression
2itscplem1 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2))

Proof of Theorem 2itscplem1
StepHypRef Expression
1 2itscp.e . . . . . . 7 𝐸 = (𝐵𝑌)
2 2itscp.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
32recnd 11202 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
4 2itscp.y . . . . . . . . 9 (𝜑𝑌 ∈ ℝ)
54recnd 11202 . . . . . . . 8 (𝜑𝑌 ∈ ℂ)
63, 5subcld 11533 . . . . . . 7 (𝜑 → (𝐵𝑌) ∈ ℂ)
71, 6eqeltrid 2832 . . . . . 6 (𝜑𝐸 ∈ ℂ)
87sqcld 14109 . . . . 5 (𝜑 → (𝐸↑2) ∈ ℂ)
93sqcld 14109 . . . . 5 (𝜑 → (𝐵↑2) ∈ ℂ)
108, 9mulcld 11194 . . . 4 (𝜑 → ((𝐸↑2) · (𝐵↑2)) ∈ ℂ)
11 2itscp.d . . . . . . 7 𝐷 = (𝑋𝐴)
12 2itscp.x . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
1312recnd 11202 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
14 2itscp.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1514recnd 11202 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1613, 15subcld 11533 . . . . . . 7 (𝜑 → (𝑋𝐴) ∈ ℂ)
1711, 16eqeltrid 2832 . . . . . 6 (𝜑𝐷 ∈ ℂ)
1817sqcld 14109 . . . . 5 (𝜑 → (𝐷↑2) ∈ ℂ)
1915sqcld 14109 . . . . 5 (𝜑 → (𝐴↑2) ∈ ℂ)
2018, 19mulcld 11194 . . . 4 (𝜑 → ((𝐷↑2) · (𝐴↑2)) ∈ ℂ)
21 2cnd 12264 . . . . 5 (𝜑 → 2 ∈ ℂ)
2217, 15mulcld 11194 . . . . . 6 (𝜑 → (𝐷 · 𝐴) ∈ ℂ)
237, 3mulcld 11194 . . . . . 6 (𝜑 → (𝐸 · 𝐵) ∈ ℂ)
2422, 23mulcld 11194 . . . . 5 (𝜑 → ((𝐷 · 𝐴) · (𝐸 · 𝐵)) ∈ ℂ)
2521, 24mulcld 11194 . . . 4 (𝜑 → (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))) ∈ ℂ)
2610, 20, 25addsubassd 11553 . . 3 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐸↑2) · (𝐵↑2)) + (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))))
2720, 25subcld 11533 . . . 4 (𝜑 → (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) ∈ ℂ)
2810, 27addcomd 11376 . . 3 (𝜑 → (((𝐸↑2) · (𝐵↑2)) + (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) = ((((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐵↑2))))
2917, 15sqmuld 14123 . . . . . 6 (𝜑 → ((𝐷 · 𝐴)↑2) = ((𝐷↑2) · (𝐴↑2)))
3029eqcomd 2735 . . . . 5 (𝜑 → ((𝐷↑2) · (𝐴↑2)) = ((𝐷 · 𝐴)↑2))
3130oveq1d 7402 . . . 4 (𝜑 → (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
327, 3sqmuld 14123 . . . . 5 (𝜑 → ((𝐸 · 𝐵)↑2) = ((𝐸↑2) · (𝐵↑2)))
3332eqcomd 2735 . . . 4 (𝜑 → ((𝐸↑2) · (𝐵↑2)) = ((𝐸 · 𝐵)↑2))
3431, 33oveq12d 7405 . . 3 (𝜑 → ((((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐵↑2))) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
3526, 28, 343eqtrd 2768 . 2 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
36 binom2sub 14185 . . 3 (((𝐷 · 𝐴) ∈ ℂ ∧ (𝐸 · 𝐵) ∈ ℂ) → (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
3722, 23, 36syl2anc 584 . 2 (𝜑 → (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
3835, 37eqtr4d 2767 1 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066  cr 11067   + caddc 11071   · cmul 11073  cmin 11405  2c2 12241  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-exp 14027
This theorem is referenced by:  2itscp  48767
  Copyright terms: Public domain W3C validator