Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2itscplem1 Structured version   Visualization version   GIF version

Theorem 2itscplem1 46012
Description: Lemma 1 for 2itscp 46015. (Contributed by AV, 4-Mar-2023.)
Hypotheses
Ref Expression
2itscp.a (𝜑𝐴 ∈ ℝ)
2itscp.b (𝜑𝐵 ∈ ℝ)
2itscp.x (𝜑𝑋 ∈ ℝ)
2itscp.y (𝜑𝑌 ∈ ℝ)
2itscp.d 𝐷 = (𝑋𝐴)
2itscp.e 𝐸 = (𝐵𝑌)
Assertion
Ref Expression
2itscplem1 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2))

Proof of Theorem 2itscplem1
StepHypRef Expression
1 2itscp.e . . . . . . 7 𝐸 = (𝐵𝑌)
2 2itscp.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
32recnd 10934 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
4 2itscp.y . . . . . . . . 9 (𝜑𝑌 ∈ ℝ)
54recnd 10934 . . . . . . . 8 (𝜑𝑌 ∈ ℂ)
63, 5subcld 11262 . . . . . . 7 (𝜑 → (𝐵𝑌) ∈ ℂ)
71, 6eqeltrid 2843 . . . . . 6 (𝜑𝐸 ∈ ℂ)
87sqcld 13790 . . . . 5 (𝜑 → (𝐸↑2) ∈ ℂ)
93sqcld 13790 . . . . 5 (𝜑 → (𝐵↑2) ∈ ℂ)
108, 9mulcld 10926 . . . 4 (𝜑 → ((𝐸↑2) · (𝐵↑2)) ∈ ℂ)
11 2itscp.d . . . . . . 7 𝐷 = (𝑋𝐴)
12 2itscp.x . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
1312recnd 10934 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
14 2itscp.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1514recnd 10934 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1613, 15subcld 11262 . . . . . . 7 (𝜑 → (𝑋𝐴) ∈ ℂ)
1711, 16eqeltrid 2843 . . . . . 6 (𝜑𝐷 ∈ ℂ)
1817sqcld 13790 . . . . 5 (𝜑 → (𝐷↑2) ∈ ℂ)
1915sqcld 13790 . . . . 5 (𝜑 → (𝐴↑2) ∈ ℂ)
2018, 19mulcld 10926 . . . 4 (𝜑 → ((𝐷↑2) · (𝐴↑2)) ∈ ℂ)
21 2cnd 11981 . . . . 5 (𝜑 → 2 ∈ ℂ)
2217, 15mulcld 10926 . . . . . 6 (𝜑 → (𝐷 · 𝐴) ∈ ℂ)
237, 3mulcld 10926 . . . . . 6 (𝜑 → (𝐸 · 𝐵) ∈ ℂ)
2422, 23mulcld 10926 . . . . 5 (𝜑 → ((𝐷 · 𝐴) · (𝐸 · 𝐵)) ∈ ℂ)
2521, 24mulcld 10926 . . . 4 (𝜑 → (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))) ∈ ℂ)
2610, 20, 25addsubassd 11282 . . 3 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐸↑2) · (𝐵↑2)) + (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))))
2720, 25subcld 11262 . . . 4 (𝜑 → (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) ∈ ℂ)
2810, 27addcomd 11107 . . 3 (𝜑 → (((𝐸↑2) · (𝐵↑2)) + (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) = ((((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐵↑2))))
2917, 15sqmuld 13804 . . . . . 6 (𝜑 → ((𝐷 · 𝐴)↑2) = ((𝐷↑2) · (𝐴↑2)))
3029eqcomd 2744 . . . . 5 (𝜑 → ((𝐷↑2) · (𝐴↑2)) = ((𝐷 · 𝐴)↑2))
3130oveq1d 7270 . . . 4 (𝜑 → (((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
327, 3sqmuld 13804 . . . . 5 (𝜑 → ((𝐸 · 𝐵)↑2) = ((𝐸↑2) · (𝐵↑2)))
3332eqcomd 2744 . . . 4 (𝜑 → ((𝐸↑2) · (𝐵↑2)) = ((𝐸 · 𝐵)↑2))
3431, 33oveq12d 7273 . . 3 (𝜑 → ((((𝐷↑2) · (𝐴↑2)) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐵↑2))) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
3526, 28, 343eqtrd 2782 . 2 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
36 binom2sub 13863 . . 3 (((𝐷 · 𝐴) ∈ ℂ ∧ (𝐸 · 𝐵) ∈ ℂ) → (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
3722, 23, 36syl2anc 583 . 2 (𝜑 → (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2) = ((((𝐷 · 𝐴)↑2) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸 · 𝐵)↑2)))
3835, 37eqtr4d 2781 1 (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  (class class class)co 7255  cc 10800  cr 10801   + caddc 10805   · cmul 10807  cmin 11135  2c2 11958  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  2itscp  46015
  Copyright terms: Public domain W3C validator