Mathbox for metakunt < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3factsumint2 Structured version   Visualization version   GIF version

Theorem 3factsumint2 39271
 Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
Hypotheses
Ref Expression
3factsumint2.1 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
3factsumint2.2 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
3factsumint2.3 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
Assertion
Ref Expression
3factsumint2 (𝜑 → Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥)
Distinct variable groups:   𝐵,𝑘,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐹(𝑥,𝑘)   𝐺(𝑥,𝑘)   𝐻(𝑥,𝑘)

Proof of Theorem 3factsumint2
StepHypRef Expression
1 3factsumint2.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
21adantlr 714 . . . 4 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐹 ∈ ℂ)
3 3factsumint2.2 . . . . 5 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
43adantr 484 . . . 4 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐺 ∈ ℂ)
5 3factsumint2.3 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
6 ancom 464 . . . . . . . 8 ((𝑥𝐴𝑘𝐵) ↔ (𝑘𝐵𝑥𝐴))
76anbi2i 625 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) ↔ (𝜑 ∧ (𝑘𝐵𝑥𝐴)))
8 anass 472 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) ↔ (𝜑 ∧ (𝑘𝐵𝑥𝐴)))
98bicomi 227 . . . . . . 7 ((𝜑 ∧ (𝑘𝐵𝑥𝐴)) ↔ ((𝜑𝑘𝐵) ∧ 𝑥𝐴))
107, 9bitri 278 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) ↔ ((𝜑𝑘𝐵) ∧ 𝑥𝐴))
1110imbi1i 353 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ) ↔ (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐻 ∈ ℂ))
125, 11mpbi 233 . . . 4 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐻 ∈ ℂ)
132, 4, 12mul12d 10838 . . 3 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → (𝐹 · (𝐺 · 𝐻)) = (𝐺 · (𝐹 · 𝐻)))
1413itgeq2dv 24383 . 2 ((𝜑𝑘𝐵) → ∫𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥 = ∫𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥)
1514sumeq2dv 15051 1 (𝜑 → Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2114  (class class class)co 7140  ℂcc 10524   · cmul 10531  Σcsu 15033  ∫citg 24220 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-seq 13365  df-sum 15034  df-itg 24225 This theorem is referenced by:  3factsumint  39274
 Copyright terms: Public domain W3C validator