Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3factsumint2 Structured version   Visualization version   GIF version

Theorem 3factsumint2 40508
Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
Hypotheses
Ref Expression
3factsumint2.1 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐น โˆˆ โ„‚)
3factsumint2.2 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐ต) โ†’ ๐บ โˆˆ โ„‚)
3factsumint2.3 ((๐œ‘ โˆง (๐‘ฅ โˆˆ ๐ด โˆง ๐‘˜ โˆˆ ๐ต)) โ†’ ๐ป โˆˆ โ„‚)
Assertion
Ref Expression
3factsumint2 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ ๐ต โˆซ๐ด(๐น ยท (๐บ ยท ๐ป)) d๐‘ฅ = ฮฃ๐‘˜ โˆˆ ๐ต โˆซ๐ด(๐บ ยท (๐น ยท ๐ป)) d๐‘ฅ)
Distinct variable groups:   ๐ต,๐‘˜,๐‘ฅ   ๐œ‘,๐‘˜,๐‘ฅ
Allowed substitution hints:   ๐ด(๐‘ฅ,๐‘˜)   ๐น(๐‘ฅ,๐‘˜)   ๐บ(๐‘ฅ,๐‘˜)   ๐ป(๐‘ฅ,๐‘˜)

Proof of Theorem 3factsumint2
StepHypRef Expression
1 3factsumint2.1 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐น โˆˆ โ„‚)
21adantlr 714 . . . 4 (((๐œ‘ โˆง ๐‘˜ โˆˆ ๐ต) โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐น โˆˆ โ„‚)
3 3factsumint2.2 . . . . 5 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐ต) โ†’ ๐บ โˆˆ โ„‚)
43adantr 482 . . . 4 (((๐œ‘ โˆง ๐‘˜ โˆˆ ๐ต) โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐บ โˆˆ โ„‚)
5 3factsumint2.3 . . . . 5 ((๐œ‘ โˆง (๐‘ฅ โˆˆ ๐ด โˆง ๐‘˜ โˆˆ ๐ต)) โ†’ ๐ป โˆˆ โ„‚)
6 ancom 462 . . . . . . . 8 ((๐‘ฅ โˆˆ ๐ด โˆง ๐‘˜ โˆˆ ๐ต) โ†” (๐‘˜ โˆˆ ๐ต โˆง ๐‘ฅ โˆˆ ๐ด))
76anbi2i 624 . . . . . . 7 ((๐œ‘ โˆง (๐‘ฅ โˆˆ ๐ด โˆง ๐‘˜ โˆˆ ๐ต)) โ†” (๐œ‘ โˆง (๐‘˜ โˆˆ ๐ต โˆง ๐‘ฅ โˆˆ ๐ด)))
8 anass 470 . . . . . . . 8 (((๐œ‘ โˆง ๐‘˜ โˆˆ ๐ต) โˆง ๐‘ฅ โˆˆ ๐ด) โ†” (๐œ‘ โˆง (๐‘˜ โˆˆ ๐ต โˆง ๐‘ฅ โˆˆ ๐ด)))
98bicomi 223 . . . . . . 7 ((๐œ‘ โˆง (๐‘˜ โˆˆ ๐ต โˆง ๐‘ฅ โˆˆ ๐ด)) โ†” ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐ต) โˆง ๐‘ฅ โˆˆ ๐ด))
107, 9bitri 275 . . . . . 6 ((๐œ‘ โˆง (๐‘ฅ โˆˆ ๐ด โˆง ๐‘˜ โˆˆ ๐ต)) โ†” ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐ต) โˆง ๐‘ฅ โˆˆ ๐ด))
1110imbi1i 350 . . . . 5 (((๐œ‘ โˆง (๐‘ฅ โˆˆ ๐ด โˆง ๐‘˜ โˆˆ ๐ต)) โ†’ ๐ป โˆˆ โ„‚) โ†” (((๐œ‘ โˆง ๐‘˜ โˆˆ ๐ต) โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ป โˆˆ โ„‚))
125, 11mpbi 229 . . . 4 (((๐œ‘ โˆง ๐‘˜ โˆˆ ๐ต) โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ป โˆˆ โ„‚)
132, 4, 12mul12d 11371 . . 3 (((๐œ‘ โˆง ๐‘˜ โˆˆ ๐ต) โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (๐น ยท (๐บ ยท ๐ป)) = (๐บ ยท (๐น ยท ๐ป)))
1413itgeq2dv 25162 . 2 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐ต) โ†’ โˆซ๐ด(๐น ยท (๐บ ยท ๐ป)) d๐‘ฅ = โˆซ๐ด(๐บ ยท (๐น ยท ๐ป)) d๐‘ฅ)
1514sumeq2dv 15595 1 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ ๐ต โˆซ๐ด(๐น ยท (๐บ ยท ๐ป)) d๐‘ฅ = ฮฃ๐‘˜ โˆˆ ๐ต โˆซ๐ด(๐บ ยท (๐น ยท ๐ป)) d๐‘ฅ)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107  (class class class)co 7362  โ„‚cc 11056   ยท cmul 11063  ฮฃcsu 15577  โˆซcitg 24998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-seq 13914  df-sum 15578  df-itg 25003
This theorem is referenced by:  3factsumint  40511
  Copyright terms: Public domain W3C validator