MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeq2dv Structured version   Visualization version   GIF version

Theorem itgeq2dv 25733
Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 7-Jul-2014.)
Hypothesis
Ref Expression
itgeq2dv.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
itgeq2dv (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgeq2dv
StepHypRef Expression
1 itgeq2dv.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
21ralrimiva 3132 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
3 itgeq2 25729 . 2 (∀𝑥𝐴 𝐵 = 𝐶 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥)
42, 3syl 17 1 (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  citg 25569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523  df-seq 14018  df-sum 15701  df-itg 25574
This theorem is referenced by:  itgmpt  25734  itgneg  25755  itgss2  25764  itgconst  25770  itgaddlem2  25775  itgadd  25776  itgsub  25777  itgfsum  25778  itgmulc2lem2  25784  itgmulc2  25785  itgabs  25786  ftc1lem4  25996  ftc2ditglem  26002  itgparts  26004  itgsubstlem  26005  itgsubst  26006  itgpowd  26007  itgulm  26367  itgulm2  26368  areaval  26924  circlemeth  34618  circlemethnat  34619  circlevma  34620  circlemethhgt  34621  hgt749d  34627  itgaddnclem2  37649  itgaddnc  37650  itgsubnc  37652  itgmulc2nclem2  37657  itgmulc2nc  37658  itgabsnc  37659  ftc1cnnclem  37661  areacirc  37683  3factsumint2  41981  3factsumint4  41983  lcmineqlem1  41988  lcmineqlem3  41990  lcmineqlem10  41997  lcmineqlem12  41999  lcmineqlem13  42000  intlewftc  42020  areaquad  43187  itgsin0pilem1  45927  itgsinexplem1  45931  itgsinexp  45932  ditgeqiooicc  45937  ditgeq3d  45941  itgcoscmulx  45946  itgsincmulx  45951  itgioocnicc  45954  itgiccshift  45957  itgperiod  45958  wallispilem1  46042  wallispilem2  46043  dirkeritg  46079  fourierdlem16  46100  fourierdlem21  46105  fourierdlem30  46114  fourierdlem73  46156  fourierdlem81  46164  fourierdlem82  46165  fourierdlem83  46166  fourierdlem87  46170  fourierdlem93  46176  fourierdlem95  46178  fourierdlem101  46184  fourierdlem103  46186  fourierdlem104  46187  fourierdlem111  46194  fourierdlem112  46195  fourierdlem115  46198  sqwvfoura  46205  sqwvfourb  46206  etransclem46  46257
  Copyright terms: Public domain W3C validator