![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3factsumint3 | Structured version Visualization version GIF version |
Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.) |
Ref | Expression |
---|---|
3factsumint3.1 | ⊢ 𝐴 = (𝐿[,]𝑈) |
3factsumint3.2 | ⊢ (𝜑 → 𝐿 ∈ ℝ) |
3factsumint3.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
3factsumint3.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) |
3factsumint3.5 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) |
3factsumint3.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) |
3factsumint3.7 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) |
3factsumint3.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ)) |
Ref | Expression |
---|---|
3factsumint3 | ⊢ (𝜑 → Σ𝑘 ∈ 𝐵 ∫𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3factsumint3.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) | |
2 | 3factsumint3.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) | |
3 | 2 | adantlr 713 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) |
4 | 3factsumint3.7 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) | |
5 | ancom 459 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
6 | 5 | anbi2i 621 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) ↔ (𝜑 ∧ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) |
7 | anass 467 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) | |
8 | 7 | bicomi 223 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴)) |
9 | 6, 8 | bitri 274 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴)) |
10 | 9 | imbi1i 348 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) ↔ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐻 ∈ ℂ)) |
11 | 4, 10 | mpbi 229 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐻 ∈ ℂ) |
12 | 3, 11 | mulcld 11271 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐹 · 𝐻) ∈ ℂ) |
13 | 3factsumint3.2 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ ℝ) | |
14 | 13 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐿 ∈ ℝ) |
15 | 3factsumint3.3 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
16 | 15 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑈 ∈ ℝ) |
17 | 3factsumint3.5 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) | |
18 | 17 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) |
19 | 3factsumint3.8 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ)) | |
20 | 18, 19 | mulcncf 25435 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐹 · 𝐻)) ∈ (𝐴–cn→ℂ)) |
21 | 3factsumint3.1 | . . . . . . 7 ⊢ 𝐴 = (𝐿[,]𝑈) | |
22 | 21 | oveq1i 7429 | . . . . . 6 ⊢ (𝐴–cn→ℂ) = ((𝐿[,]𝑈)–cn→ℂ) |
23 | 20, 22 | eleqtrdi 2835 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐹 · 𝐻)) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
24 | cnicciblnc 25833 | . . . . 5 ⊢ ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥 ∈ 𝐴 ↦ (𝐹 · 𝐻)) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → (𝑥 ∈ 𝐴 ↦ (𝐹 · 𝐻)) ∈ 𝐿1) | |
25 | 14, 16, 23, 24 | syl3anc 1368 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐹 · 𝐻)) ∈ 𝐿1) |
26 | 1, 12, 25 | itgmulc2 25824 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥) = ∫𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥) |
27 | 26 | eqcomd 2731 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ∫𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥 = (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥)) |
28 | 27 | sumeq2dv 15693 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐵 ∫𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5232 (class class class)co 7419 ℂcc 11143 ℝcr 11144 · cmul 11150 [,]cicc 13367 Σcsu 15676 –cn→ccncf 24857 𝐿1cibl 25607 ∫citg 25608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9671 ax-cc 10465 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 ax-addf 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-disj 5115 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-ofr 7686 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-omul 8492 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9393 df-fi 9441 df-sup 9472 df-inf 9473 df-oi 9540 df-dju 9931 df-card 9969 df-acn 9972 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-ioo 13368 df-ioc 13369 df-ico 13370 df-icc 13371 df-fz 13525 df-fzo 13668 df-fl 13798 df-mod 13876 df-seq 14008 df-exp 14068 df-hash 14334 df-cj 15090 df-re 15091 df-im 15092 df-sqrt 15226 df-abs 15227 df-clim 15476 df-rlim 15477 df-sum 15677 df-struct 17135 df-sets 17152 df-slot 17170 df-ndx 17182 df-base 17200 df-ress 17229 df-plusg 17265 df-mulr 17266 df-starv 17267 df-sca 17268 df-vsca 17269 df-ip 17270 df-tset 17271 df-ple 17272 df-ds 17274 df-unif 17275 df-hom 17276 df-cco 17277 df-rest 17423 df-topn 17424 df-0g 17442 df-gsum 17443 df-topgen 17444 df-pt 17445 df-prds 17448 df-xrs 17503 df-qtop 17508 df-imas 17509 df-xps 17511 df-mre 17585 df-mrc 17586 df-acs 17588 df-mgm 18619 df-sgrp 18698 df-mnd 18714 df-submnd 18760 df-mulg 19048 df-cntz 19297 df-cmn 19766 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-cnfld 21314 df-top 22857 df-topon 22874 df-topsp 22896 df-bases 22910 df-cn 23192 df-cnp 23193 df-cmp 23352 df-tx 23527 df-hmeo 23720 df-xms 24287 df-ms 24288 df-tms 24289 df-cncf 24859 df-ovol 25454 df-vol 25455 df-mbf 25609 df-itg1 25610 df-itg2 25611 df-ibl 25612 df-itg 25613 df-0p 25660 |
This theorem is referenced by: 3factsumint 41648 |
Copyright terms: Public domain | W3C validator |