| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3factsumint3 | Structured version Visualization version GIF version | ||
| Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.) |
| Ref | Expression |
|---|---|
| 3factsumint3.1 | ⊢ 𝐴 = (𝐿[,]𝑈) |
| 3factsumint3.2 | ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 3factsumint3.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| 3factsumint3.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) |
| 3factsumint3.5 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) |
| 3factsumint3.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) |
| 3factsumint3.7 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) |
| 3factsumint3.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ)) |
| Ref | Expression |
|---|---|
| 3factsumint3 | ⊢ (𝜑 → Σ𝑘 ∈ 𝐵 ∫𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3factsumint3.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) | |
| 2 | 3factsumint3.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) | |
| 3 | 2 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) |
| 4 | 3factsumint3.7 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) | |
| 5 | ancom 460 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 6 | 5 | anbi2i 623 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) ↔ (𝜑 ∧ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) |
| 7 | anass 468 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) | |
| 8 | 7 | bicomi 224 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴)) |
| 9 | 6, 8 | bitri 275 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴)) |
| 10 | 9 | imbi1i 349 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) ↔ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐻 ∈ ℂ)) |
| 11 | 4, 10 | mpbi 230 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐻 ∈ ℂ) |
| 12 | 3, 11 | mulcld 11264 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐹 · 𝐻) ∈ ℂ) |
| 13 | 3factsumint3.2 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ ℝ) | |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐿 ∈ ℝ) |
| 15 | 3factsumint3.3 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑈 ∈ ℝ) |
| 17 | 3factsumint3.5 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) | |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) |
| 19 | 3factsumint3.8 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ)) | |
| 20 | 18, 19 | mulcncf 25435 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐹 · 𝐻)) ∈ (𝐴–cn→ℂ)) |
| 21 | 3factsumint3.1 | . . . . . . 7 ⊢ 𝐴 = (𝐿[,]𝑈) | |
| 22 | 21 | oveq1i 7424 | . . . . . 6 ⊢ (𝐴–cn→ℂ) = ((𝐿[,]𝑈)–cn→ℂ) |
| 23 | 20, 22 | eleqtrdi 2843 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐹 · 𝐻)) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
| 24 | cnicciblnc 25833 | . . . . 5 ⊢ ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥 ∈ 𝐴 ↦ (𝐹 · 𝐻)) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → (𝑥 ∈ 𝐴 ↦ (𝐹 · 𝐻)) ∈ 𝐿1) | |
| 25 | 14, 16, 23, 24 | syl3anc 1372 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐹 · 𝐻)) ∈ 𝐿1) |
| 26 | 1, 12, 25 | itgmulc2 25824 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥) = ∫𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥) |
| 27 | 26 | eqcomd 2740 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ∫𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥 = (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥)) |
| 28 | 27 | sumeq2dv 15721 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐵 ∫𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5207 (class class class)co 7414 ℂcc 11136 ℝcr 11137 · cmul 11143 [,]cicc 13373 Σcsu 15705 –cn→ccncf 24857 𝐿1cibl 25607 ∫citg 25608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-cc 10458 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-disj 5093 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-ofr 7681 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-oadd 8493 df-omul 8494 df-er 8728 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-dju 9924 df-card 9962 df-acn 9965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-q 12974 df-rp 13018 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-ioo 13374 df-ioc 13375 df-ico 13376 df-icc 13377 df-fz 13531 df-fzo 13678 df-fl 13815 df-mod 13893 df-seq 14026 df-exp 14086 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-rlim 15508 df-sum 15706 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-starv 17292 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-hom 17301 df-cco 17302 df-rest 17443 df-topn 17444 df-0g 17462 df-gsum 17463 df-topgen 17464 df-pt 17465 df-prds 17468 df-xrs 17523 df-qtop 17528 df-imas 17529 df-xps 17531 df-mre 17605 df-mrc 17606 df-acs 17608 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-mulg 19060 df-cntz 19309 df-cmn 19773 df-psmet 21323 df-xmet 21324 df-met 21325 df-bl 21326 df-mopn 21327 df-cnfld 21332 df-top 22867 df-topon 22884 df-topsp 22906 df-bases 22919 df-cn 23200 df-cnp 23201 df-cmp 23360 df-tx 23535 df-hmeo 23728 df-xms 24294 df-ms 24295 df-tms 24296 df-cncf 24859 df-ovol 25454 df-vol 25455 df-mbf 25609 df-itg1 25610 df-itg2 25611 df-ibl 25612 df-itg 25613 df-0p 25660 |
| This theorem is referenced by: 3factsumint 41967 |
| Copyright terms: Public domain | W3C validator |