Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3factsumint3 Structured version   Visualization version   GIF version

Theorem 3factsumint3 41646
Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
Hypotheses
Ref Expression
3factsumint3.1 𝐴 = (𝐿[,]𝑈)
3factsumint3.2 (𝜑𝐿 ∈ ℝ)
3factsumint3.3 (𝜑𝑈 ∈ ℝ)
3factsumint3.4 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
3factsumint3.5 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
3factsumint3.6 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
3factsumint3.7 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
3factsumint3.8 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
Assertion
Ref Expression
3factsumint3 (𝜑 → Σ𝑘𝐵𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥 = Σ𝑘𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥))
Distinct variable groups:   𝑥,𝐴   𝐵,𝑘,𝑥   𝑥,𝐺   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑘)   𝑈(𝑥,𝑘)   𝐹(𝑥,𝑘)   𝐺(𝑘)   𝐻(𝑥,𝑘)   𝐿(𝑥,𝑘)

Proof of Theorem 3factsumint3
StepHypRef Expression
1 3factsumint3.6 . . . 4 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
2 3factsumint3.4 . . . . . 6 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
32adantlr 713 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐹 ∈ ℂ)
4 3factsumint3.7 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
5 ancom 459 . . . . . . . . 9 ((𝑥𝐴𝑘𝐵) ↔ (𝑘𝐵𝑥𝐴))
65anbi2i 621 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) ↔ (𝜑 ∧ (𝑘𝐵𝑥𝐴)))
7 anass 467 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) ↔ (𝜑 ∧ (𝑘𝐵𝑥𝐴)))
87bicomi 223 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐵𝑥𝐴)) ↔ ((𝜑𝑘𝐵) ∧ 𝑥𝐴))
96, 8bitri 274 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) ↔ ((𝜑𝑘𝐵) ∧ 𝑥𝐴))
109imbi1i 348 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ) ↔ (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐻 ∈ ℂ))
114, 10mpbi 229 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐻 ∈ ℂ)
123, 11mulcld 11271 . . . 4 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → (𝐹 · 𝐻) ∈ ℂ)
13 3factsumint3.2 . . . . . 6 (𝜑𝐿 ∈ ℝ)
1413adantr 479 . . . . 5 ((𝜑𝑘𝐵) → 𝐿 ∈ ℝ)
15 3factsumint3.3 . . . . . 6 (𝜑𝑈 ∈ ℝ)
1615adantr 479 . . . . 5 ((𝜑𝑘𝐵) → 𝑈 ∈ ℝ)
17 3factsumint3.5 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
1817adantr 479 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
19 3factsumint3.8 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
2018, 19mulcncf 25435 . . . . . 6 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐹 · 𝐻)) ∈ (𝐴cn→ℂ))
21 3factsumint3.1 . . . . . . 7 𝐴 = (𝐿[,]𝑈)
2221oveq1i 7429 . . . . . 6 (𝐴cn→ℂ) = ((𝐿[,]𝑈)–cn→ℂ)
2320, 22eleqtrdi 2835 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐹 · 𝐻)) ∈ ((𝐿[,]𝑈)–cn→ℂ))
24 cnicciblnc 25833 . . . . 5 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥𝐴 ↦ (𝐹 · 𝐻)) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → (𝑥𝐴 ↦ (𝐹 · 𝐻)) ∈ 𝐿1)
2514, 16, 23, 24syl3anc 1368 . . . 4 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐹 · 𝐻)) ∈ 𝐿1)
261, 12, 25itgmulc2 25824 . . 3 ((𝜑𝑘𝐵) → (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥) = ∫𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥)
2726eqcomd 2731 . 2 ((𝜑𝑘𝐵) → ∫𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥 = (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥))
2827sumeq2dv 15693 1 (𝜑 → Σ𝑘𝐵𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥 = Σ𝑘𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cmpt 5232  (class class class)co 7419  cc 11143  cr 11144   · cmul 11150  [,]cicc 13367  Σcsu 15676  cnccncf 24857  𝐿1cibl 25607  citg 25608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9671  ax-cc 10465  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223  ax-addf 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-omul 8492  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9393  df-fi 9441  df-sup 9472  df-inf 9473  df-oi 9540  df-dju 9931  df-card 9969  df-acn 9972  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13798  df-mod 13876  df-seq 14008  df-exp 14068  df-hash 14334  df-cj 15090  df-re 15091  df-im 15092  df-sqrt 15226  df-abs 15227  df-clim 15476  df-rlim 15477  df-sum 15677  df-struct 17135  df-sets 17152  df-slot 17170  df-ndx 17182  df-base 17200  df-ress 17229  df-plusg 17265  df-mulr 17266  df-starv 17267  df-sca 17268  df-vsca 17269  df-ip 17270  df-tset 17271  df-ple 17272  df-ds 17274  df-unif 17275  df-hom 17276  df-cco 17277  df-rest 17423  df-topn 17424  df-0g 17442  df-gsum 17443  df-topgen 17444  df-pt 17445  df-prds 17448  df-xrs 17503  df-qtop 17508  df-imas 17509  df-xps 17511  df-mre 17585  df-mrc 17586  df-acs 17588  df-mgm 18619  df-sgrp 18698  df-mnd 18714  df-submnd 18760  df-mulg 19048  df-cntz 19297  df-cmn 19766  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-cnfld 21314  df-top 22857  df-topon 22874  df-topsp 22896  df-bases 22910  df-cn 23192  df-cnp 23193  df-cmp 23352  df-tx 23527  df-hmeo 23720  df-xms 24287  df-ms 24288  df-tms 24289  df-cncf 24859  df-ovol 25454  df-vol 25455  df-mbf 25609  df-itg1 25610  df-itg2 25611  df-ibl 25612  df-itg 25613  df-0p 25660
This theorem is referenced by:  3factsumint  41648
  Copyright terms: Public domain W3C validator