Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sumeq2dv | Structured version Visualization version GIF version |
Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
sumeq2dv.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sumeq2dv | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) | |
2 | 1 | ralrimiva 3140 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
3 | 2 | sumeq2d 15459 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
Copyright terms: Public domain | W3C validator |