| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cyc3fv3 | Structured version Visualization version GIF version | ||
| Description: Function value of a 3-cycle at the third point. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
| Ref | Expression |
|---|---|
| cycpm3.c | ⊢ 𝐶 = (toCyc‘𝐷) |
| cycpm3.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| cycpm3.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| cycpm3.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| cycpm3.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| cycpm3.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
| cycpm3.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| cycpm3.2 | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
| cycpm3.3 | ⊢ (𝜑 → 𝐾 ≠ 𝐼) |
| Ref | Expression |
|---|---|
| cyc3fv3 | ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐾) = 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycpm3.c | . . 3 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 2 | cycpm3.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | cycpm3.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
| 4 | cycpm3.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
| 5 | cycpm3.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
| 6 | 3, 4, 5 | s3cld 14896 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷) |
| 7 | cycpm3.1 | . . . 4 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
| 8 | cycpm3.2 | . . . 4 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
| 9 | cycpm3.3 | . . . 4 ⊢ (𝜑 → 𝐾 ≠ 𝐼) | |
| 10 | 3, 4, 5, 7, 8, 9 | s3f1 32927 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉–1-1→𝐷) |
| 11 | 3pos 12350 | . . . . 5 ⊢ 0 < 3 | |
| 12 | s3len 14918 | . . . . 5 ⊢ (♯‘〈“𝐼𝐽𝐾”〉) = 3 | |
| 13 | 11, 12 | breqtrri 5151 | . . . 4 ⊢ 0 < (♯‘〈“𝐼𝐽𝐾”〉) |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → 0 < (♯‘〈“𝐼𝐽𝐾”〉)) |
| 15 | 12 | oveq1i 7420 | . . . . 5 ⊢ ((♯‘〈“𝐼𝐽𝐾”〉) − 1) = (3 − 1) |
| 16 | 3m1e2 12373 | . . . . 5 ⊢ (3 − 1) = 2 | |
| 17 | 15, 16 | eqtr2i 2760 | . . . 4 ⊢ 2 = ((♯‘〈“𝐼𝐽𝐾”〉) − 1) |
| 18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → 2 = ((♯‘〈“𝐼𝐽𝐾”〉) − 1)) |
| 19 | 1, 2, 6, 10, 14, 18 | cycpmfv2 33130 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘(〈“𝐼𝐽𝐾”〉‘2)) = (〈“𝐼𝐽𝐾”〉‘0)) |
| 20 | s3fv2 14917 | . . . 4 ⊢ (𝐾 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) | |
| 21 | 5, 20 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) |
| 22 | 21 | fveq2d 6885 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘(〈“𝐼𝐽𝐾”〉‘2)) = ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐾)) |
| 23 | s3fv0 14915 | . . 3 ⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) | |
| 24 | 3, 23 | syl 17 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) |
| 25 | 19, 22, 24 | 3eqtr3d 2779 | 1 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐾) = 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 < clt 11274 − cmin 11471 2c2 12300 3c3 12301 ♯chash 14353 〈“cs3 14866 SymGrpcsymg 19355 toCycctocyc 33122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-hash 14354 df-word 14537 df-concat 14594 df-s1 14619 df-substr 14664 df-pfx 14694 df-csh 14812 df-s2 14872 df-s3 14873 df-tocyc 33123 |
| This theorem is referenced by: cyc3co2 33156 |
| Copyright terms: Public domain | W3C validator |