Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3fv3 Structured version   Visualization version   GIF version

Theorem cyc3fv3 30880
 Description: Function value of a 3-cycle at the third point. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
cycpm3.c 𝐶 = (toCyc‘𝐷)
cycpm3.s 𝑆 = (SymGrp‘𝐷)
cycpm3.d (𝜑𝐷𝑉)
cycpm3.i (𝜑𝐼𝐷)
cycpm3.j (𝜑𝐽𝐷)
cycpm3.k (𝜑𝐾𝐷)
cycpm3.1 (𝜑𝐼𝐽)
cycpm3.2 (𝜑𝐽𝐾)
cycpm3.3 (𝜑𝐾𝐼)
Assertion
Ref Expression
cyc3fv3 (𝜑 → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐾) = 𝐼)

Proof of Theorem cyc3fv3
StepHypRef Expression
1 cycpm3.c . . 3 𝐶 = (toCyc‘𝐷)
2 cycpm3.d . . 3 (𝜑𝐷𝑉)
3 cycpm3.i . . . 4 (𝜑𝐼𝐷)
4 cycpm3.j . . . 4 (𝜑𝐽𝐷)
5 cycpm3.k . . . 4 (𝜑𝐾𝐷)
63, 4, 5s3cld 14245 . . 3 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷)
7 cycpm3.1 . . . 4 (𝜑𝐼𝐽)
8 cycpm3.2 . . . 4 (𝜑𝐽𝐾)
9 cycpm3.3 . . . 4 (𝜑𝐾𝐼)
103, 4, 5, 7, 8, 9s3f1 30693 . . 3 (𝜑 → ⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩–1-1𝐷)
11 3pos 11748 . . . . 5 0 < 3
12 s3len 14267 . . . . 5 (♯‘⟨“𝐼𝐽𝐾”⟩) = 3
1311, 12breqtrri 5061 . . . 4 0 < (♯‘⟨“𝐼𝐽𝐾”⟩)
1413a1i 11 . . 3 (𝜑 → 0 < (♯‘⟨“𝐼𝐽𝐾”⟩))
1512oveq1i 7155 . . . . 5 ((♯‘⟨“𝐼𝐽𝐾”⟩) − 1) = (3 − 1)
16 3m1e2 11771 . . . . 5 (3 − 1) = 2
1715, 16eqtr2i 2822 . . . 4 2 = ((♯‘⟨“𝐼𝐽𝐾”⟩) − 1)
1817a1i 11 . . 3 (𝜑 → 2 = ((♯‘⟨“𝐼𝐽𝐾”⟩) − 1))
191, 2, 6, 10, 14, 18cycpmfv2 30855 . 2 (𝜑 → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘(⟨“𝐼𝐽𝐾”⟩‘2)) = (⟨“𝐼𝐽𝐾”⟩‘0))
20 s3fv2 14266 . . . 4 (𝐾𝐷 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
215, 20syl 17 . . 3 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
2221fveq2d 6659 . 2 (𝜑 → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘(⟨“𝐼𝐽𝐾”⟩‘2)) = ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐾))
23 s3fv0 14264 . . 3 (𝐼𝐷 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
243, 23syl 17 . 2 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
2519, 22, 243eqtr3d 2841 1 (𝜑 → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐾) = 𝐼)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   class class class wbr 5034  ‘cfv 6332  (class class class)co 7145  0cc0 10544  1c1 10545   < clt 10682   − cmin 10877  2c2 11698  3c3 11699  ♯chash 13706  ⟨“cs3 14215  SymGrpcsymg 18508  toCycctocyc 30847 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-map 8409  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-sup 8908  df-inf 8909  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-n0 11904  df-z 11990  df-uz 12252  df-rp 12398  df-fz 12906  df-fzo 13049  df-fl 13177  df-mod 13253  df-hash 13707  df-word 13878  df-concat 13934  df-s1 13961  df-substr 14014  df-pfx 14044  df-csh 14162  df-s2 14221  df-s3 14222  df-tocyc 30848 This theorem is referenced by:  cyc3co2  30881
 Copyright terms: Public domain W3C validator