| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cyc3fv1 | Structured version Visualization version GIF version | ||
| Description: Function value of a 3-cycle at the first point. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
| Ref | Expression |
|---|---|
| cycpm3.c | ⊢ 𝐶 = (toCyc‘𝐷) |
| cycpm3.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| cycpm3.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| cycpm3.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| cycpm3.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| cycpm3.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
| cycpm3.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| cycpm3.2 | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
| cycpm3.3 | ⊢ (𝜑 → 𝐾 ≠ 𝐼) |
| Ref | Expression |
|---|---|
| cyc3fv1 | ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐼) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycpm3.c | . . 3 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 2 | cycpm3.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | cycpm3.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
| 4 | cycpm3.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
| 5 | cycpm3.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
| 6 | 3, 4, 5 | s3cld 14891 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷) |
| 7 | cycpm3.1 | . . . 4 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
| 8 | cycpm3.2 | . . . 4 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
| 9 | cycpm3.3 | . . . 4 ⊢ (𝜑 → 𝐾 ≠ 𝐼) | |
| 10 | 3, 4, 5, 7, 8, 9 | s3f1 32922 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉–1-1→𝐷) |
| 11 | c0ex 11229 | . . . . . 6 ⊢ 0 ∈ V | |
| 12 | 11 | prid1 4738 | . . . . 5 ⊢ 0 ∈ {0, 1} |
| 13 | s3len 14913 | . . . . . . . . 9 ⊢ (♯‘〈“𝐼𝐽𝐾”〉) = 3 | |
| 14 | 13 | oveq1i 7415 | . . . . . . . 8 ⊢ ((♯‘〈“𝐼𝐽𝐾”〉) − 1) = (3 − 1) |
| 15 | 3m1e2 12368 | . . . . . . . 8 ⊢ (3 − 1) = 2 | |
| 16 | 14, 15 | eqtri 2758 | . . . . . . 7 ⊢ ((♯‘〈“𝐼𝐽𝐾”〉) − 1) = 2 |
| 17 | 16 | oveq2i 7416 | . . . . . 6 ⊢ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1)) = (0..^2) |
| 18 | fzo0to2pr 13766 | . . . . . 6 ⊢ (0..^2) = {0, 1} | |
| 19 | 17, 18 | eqtri 2758 | . . . . 5 ⊢ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1)) = {0, 1} |
| 20 | 12, 19 | eleqtrri 2833 | . . . 4 ⊢ 0 ∈ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1)) |
| 21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1))) |
| 22 | 1, 2, 6, 10, 21 | cycpmfv1 33124 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘(〈“𝐼𝐽𝐾”〉‘0)) = (〈“𝐼𝐽𝐾”〉‘(0 + 1))) |
| 23 | s3fv0 14910 | . . . 4 ⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) | |
| 24 | 3, 23 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) |
| 25 | 24 | fveq2d 6880 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘(〈“𝐼𝐽𝐾”〉‘0)) = ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐼)) |
| 26 | 0p1e1 12362 | . . . 4 ⊢ (0 + 1) = 1 | |
| 27 | 26 | fveq2i 6879 | . . 3 ⊢ (〈“𝐼𝐽𝐾”〉‘(0 + 1)) = (〈“𝐼𝐽𝐾”〉‘1) |
| 28 | s3fv1 14911 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) | |
| 29 | 4, 28 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) |
| 30 | 27, 29 | eqtrid 2782 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘(0 + 1)) = 𝐽) |
| 31 | 22, 25, 30 | 3eqtr3d 2778 | 1 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐼) = 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 {cpr 4603 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 − cmin 11466 2c2 12295 3c3 12296 ..^cfzo 13671 ♯chash 14348 〈“cs3 14861 SymGrpcsymg 19350 toCycctocyc 33117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-substr 14659 df-pfx 14689 df-csh 14807 df-s2 14867 df-s3 14868 df-tocyc 33118 |
| This theorem is referenced by: cyc3co2 33151 |
| Copyright terms: Public domain | W3C validator |