Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3fv1 Structured version   Visualization version   GIF version

Theorem cyc3fv1 33157
Description: Function value of a 3-cycle at the first point. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
cycpm3.c 𝐶 = (toCyc‘𝐷)
cycpm3.s 𝑆 = (SymGrp‘𝐷)
cycpm3.d (𝜑𝐷𝑉)
cycpm3.i (𝜑𝐼𝐷)
cycpm3.j (𝜑𝐽𝐷)
cycpm3.k (𝜑𝐾𝐷)
cycpm3.1 (𝜑𝐼𝐽)
cycpm3.2 (𝜑𝐽𝐾)
cycpm3.3 (𝜑𝐾𝐼)
Assertion
Ref Expression
cyc3fv1 (𝜑 → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐼) = 𝐽)

Proof of Theorem cyc3fv1
StepHypRef Expression
1 cycpm3.c . . 3 𝐶 = (toCyc‘𝐷)
2 cycpm3.d . . 3 (𝜑𝐷𝑉)
3 cycpm3.i . . . 4 (𝜑𝐼𝐷)
4 cycpm3.j . . . 4 (𝜑𝐽𝐷)
5 cycpm3.k . . . 4 (𝜑𝐾𝐷)
63, 4, 5s3cld 14911 . . 3 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷)
7 cycpm3.1 . . . 4 (𝜑𝐼𝐽)
8 cycpm3.2 . . . 4 (𝜑𝐽𝐾)
9 cycpm3.3 . . . 4 (𝜑𝐾𝐼)
103, 4, 5, 7, 8, 9s3f1 32931 . . 3 (𝜑 → ⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩–1-1𝐷)
11 c0ex 11255 . . . . . 6 0 ∈ V
1211prid1 4762 . . . . 5 0 ∈ {0, 1}
13 s3len 14933 . . . . . . . . 9 (♯‘⟨“𝐼𝐽𝐾”⟩) = 3
1413oveq1i 7441 . . . . . . . 8 ((♯‘⟨“𝐼𝐽𝐾”⟩) − 1) = (3 − 1)
15 3m1e2 12394 . . . . . . . 8 (3 − 1) = 2
1614, 15eqtri 2765 . . . . . . 7 ((♯‘⟨“𝐼𝐽𝐾”⟩) − 1) = 2
1716oveq2i 7442 . . . . . 6 (0..^((♯‘⟨“𝐼𝐽𝐾”⟩) − 1)) = (0..^2)
18 fzo0to2pr 13789 . . . . . 6 (0..^2) = {0, 1}
1917, 18eqtri 2765 . . . . 5 (0..^((♯‘⟨“𝐼𝐽𝐾”⟩) − 1)) = {0, 1}
2012, 19eleqtrri 2840 . . . 4 0 ∈ (0..^((♯‘⟨“𝐼𝐽𝐾”⟩) − 1))
2120a1i 11 . . 3 (𝜑 → 0 ∈ (0..^((♯‘⟨“𝐼𝐽𝐾”⟩) − 1)))
221, 2, 6, 10, 21cycpmfv1 33133 . 2 (𝜑 → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘(⟨“𝐼𝐽𝐾”⟩‘0)) = (⟨“𝐼𝐽𝐾”⟩‘(0 + 1)))
23 s3fv0 14930 . . . 4 (𝐼𝐷 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
243, 23syl 17 . . 3 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
2524fveq2d 6910 . 2 (𝜑 → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘(⟨“𝐼𝐽𝐾”⟩‘0)) = ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐼))
26 0p1e1 12388 . . . 4 (0 + 1) = 1
2726fveq2i 6909 . . 3 (⟨“𝐼𝐽𝐾”⟩‘(0 + 1)) = (⟨“𝐼𝐽𝐾”⟩‘1)
28 s3fv1 14931 . . . 4 (𝐽𝐷 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
294, 28syl 17 . . 3 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
3027, 29eqtrid 2789 . 2 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘(0 + 1)) = 𝐽)
3122, 25, 303eqtr3d 2785 1 (𝜑 → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐼) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2940  {cpr 4628  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  cmin 11492  2c2 12321  3c3 12322  ..^cfzo 13694  chash 14369  ⟨“cs3 14881  SymGrpcsymg 19386  toCycctocyc 33126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-csh 14827  df-s2 14887  df-s3 14888  df-tocyc 33127
This theorem is referenced by:  cyc3co2  33160
  Copyright terms: Public domain W3C validator