Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3fv2 Structured version   Visualization version   GIF version

Theorem cyc3fv2 31124
Description: Function value of a 3-cycle at the second point. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
cycpm3.c 𝐶 = (toCyc‘𝐷)
cycpm3.s 𝑆 = (SymGrp‘𝐷)
cycpm3.d (𝜑𝐷𝑉)
cycpm3.i (𝜑𝐼𝐷)
cycpm3.j (𝜑𝐽𝐷)
cycpm3.k (𝜑𝐾𝐷)
cycpm3.1 (𝜑𝐼𝐽)
cycpm3.2 (𝜑𝐽𝐾)
cycpm3.3 (𝜑𝐾𝐼)
Assertion
Ref Expression
cyc3fv2 (𝜑 → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐽) = 𝐾)

Proof of Theorem cyc3fv2
StepHypRef Expression
1 cycpm3.c . . 3 𝐶 = (toCyc‘𝐷)
2 cycpm3.d . . 3 (𝜑𝐷𝑉)
3 cycpm3.i . . . 4 (𝜑𝐼𝐷)
4 cycpm3.j . . . 4 (𝜑𝐽𝐷)
5 cycpm3.k . . . 4 (𝜑𝐾𝐷)
63, 4, 5s3cld 14437 . . 3 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷)
7 cycpm3.1 . . . 4 (𝜑𝐼𝐽)
8 cycpm3.2 . . . 4 (𝜑𝐽𝐾)
9 cycpm3.3 . . . 4 (𝜑𝐾𝐼)
103, 4, 5, 7, 8, 9s3f1 30941 . . 3 (𝜑 → ⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩–1-1𝐷)
11 1ex 10829 . . . . . 6 1 ∈ V
1211prid2 4679 . . . . 5 1 ∈ {0, 1}
13 s3len 14459 . . . . . . . . 9 (♯‘⟨“𝐼𝐽𝐾”⟩) = 3
1413oveq1i 7223 . . . . . . . 8 ((♯‘⟨“𝐼𝐽𝐾”⟩) − 1) = (3 − 1)
15 3m1e2 11958 . . . . . . . 8 (3 − 1) = 2
1614, 15eqtri 2765 . . . . . . 7 ((♯‘⟨“𝐼𝐽𝐾”⟩) − 1) = 2
1716oveq2i 7224 . . . . . 6 (0..^((♯‘⟨“𝐼𝐽𝐾”⟩) − 1)) = (0..^2)
18 fzo0to2pr 13327 . . . . . 6 (0..^2) = {0, 1}
1917, 18eqtri 2765 . . . . 5 (0..^((♯‘⟨“𝐼𝐽𝐾”⟩) − 1)) = {0, 1}
2012, 19eleqtrri 2837 . . . 4 1 ∈ (0..^((♯‘⟨“𝐼𝐽𝐾”⟩) − 1))
2120a1i 11 . . 3 (𝜑 → 1 ∈ (0..^((♯‘⟨“𝐼𝐽𝐾”⟩) − 1)))
221, 2, 6, 10, 21cycpmfv1 31099 . 2 (𝜑 → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘(⟨“𝐼𝐽𝐾”⟩‘1)) = (⟨“𝐼𝐽𝐾”⟩‘(1 + 1)))
23 s3fv1 14457 . . . 4 (𝐽𝐷 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
244, 23syl 17 . . 3 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
2524fveq2d 6721 . 2 (𝜑 → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘(⟨“𝐼𝐽𝐾”⟩‘1)) = ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐽))
26 1p1e2 11955 . . . 4 (1 + 1) = 2
2726fveq2i 6720 . . 3 (⟨“𝐼𝐽𝐾”⟩‘(1 + 1)) = (⟨“𝐼𝐽𝐾”⟩‘2)
28 s3fv2 14458 . . . 4 (𝐾𝐷 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
295, 28syl 17 . . 3 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
3027, 29syl5eq 2790 . 2 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘(1 + 1)) = 𝐾)
3122, 25, 303eqtr3d 2785 1 (𝜑 → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐽) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  wne 2940  {cpr 4543  cfv 6380  (class class class)co 7213  0cc0 10729  1c1 10730   + caddc 10732  cmin 11062  2c2 11885  3c3 11886  ..^cfzo 13238  chash 13896  ⟨“cs3 14407  SymGrpcsymg 18759  toCycctocyc 31092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-hash 13897  df-word 14070  df-concat 14126  df-s1 14153  df-substr 14206  df-pfx 14236  df-csh 14354  df-s2 14413  df-s3 14414  df-tocyc 31093
This theorem is referenced by:  cyc3co2  31126
  Copyright terms: Public domain W3C validator