![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cyc3fv2 | Structured version Visualization version GIF version |
Description: Function value of a 3-cycle at the second point. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
Ref | Expression |
---|---|
cycpm3.c | ⊢ 𝐶 = (toCyc‘𝐷) |
cycpm3.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
cycpm3.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
cycpm3.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
cycpm3.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
cycpm3.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
cycpm3.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
cycpm3.2 | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
cycpm3.3 | ⊢ (𝜑 → 𝐾 ≠ 𝐼) |
Ref | Expression |
---|---|
cyc3fv2 | ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐽) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycpm3.c | . . 3 ⊢ 𝐶 = (toCyc‘𝐷) | |
2 | cycpm3.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
3 | cycpm3.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
4 | cycpm3.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
5 | cycpm3.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
6 | 3, 4, 5 | s3cld 14874 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷) |
7 | cycpm3.1 | . . . 4 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
8 | cycpm3.2 | . . . 4 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
9 | cycpm3.3 | . . . 4 ⊢ (𝜑 → 𝐾 ≠ 𝐼) | |
10 | 3, 4, 5, 7, 8, 9 | s3f1 32811 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉–1-1→𝐷) |
11 | 1ex 11249 | . . . . . 6 ⊢ 1 ∈ V | |
12 | 11 | prid2 4763 | . . . . 5 ⊢ 1 ∈ {0, 1} |
13 | s3len 14896 | . . . . . . . . 9 ⊢ (♯‘〈“𝐼𝐽𝐾”〉) = 3 | |
14 | 13 | oveq1i 7424 | . . . . . . . 8 ⊢ ((♯‘〈“𝐼𝐽𝐾”〉) − 1) = (3 − 1) |
15 | 3m1e2 12384 | . . . . . . . 8 ⊢ (3 − 1) = 2 | |
16 | 14, 15 | eqtri 2754 | . . . . . . 7 ⊢ ((♯‘〈“𝐼𝐽𝐾”〉) − 1) = 2 |
17 | 16 | oveq2i 7425 | . . . . . 6 ⊢ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1)) = (0..^2) |
18 | fzo0to2pr 13763 | . . . . . 6 ⊢ (0..^2) = {0, 1} | |
19 | 17, 18 | eqtri 2754 | . . . . 5 ⊢ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1)) = {0, 1} |
20 | 12, 19 | eleqtrri 2825 | . . . 4 ⊢ 1 ∈ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1)) |
21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1))) |
22 | 1, 2, 6, 10, 21 | cycpmfv1 32993 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘(〈“𝐼𝐽𝐾”〉‘1)) = (〈“𝐼𝐽𝐾”〉‘(1 + 1))) |
23 | s3fv1 14894 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) | |
24 | 4, 23 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) |
25 | 24 | fveq2d 6895 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘(〈“𝐼𝐽𝐾”〉‘1)) = ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐽)) |
26 | 1p1e2 12381 | . . . 4 ⊢ (1 + 1) = 2 | |
27 | 26 | fveq2i 6894 | . . 3 ⊢ (〈“𝐼𝐽𝐾”〉‘(1 + 1)) = (〈“𝐼𝐽𝐾”〉‘2) |
28 | s3fv2 14895 | . . . 4 ⊢ (𝐾 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) | |
29 | 5, 28 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) |
30 | 27, 29 | eqtrid 2778 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘(1 + 1)) = 𝐾) |
31 | 22, 25, 30 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐽) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 {cpr 4626 ‘cfv 6544 (class class class)co 7414 0cc0 11147 1c1 11148 + caddc 11150 − cmin 11483 2c2 12311 3c3 12312 ..^cfzo 13673 ♯chash 14340 〈“cs3 14844 SymGrpcsymg 19358 toCycctocyc 32986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-pre-sup 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9476 df-inf 9477 df-card 9973 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-div 11911 df-nn 12257 df-2 12319 df-3 12320 df-n0 12517 df-z 12603 df-uz 12867 df-rp 13021 df-fz 13531 df-fzo 13674 df-fl 13804 df-mod 13882 df-hash 14341 df-word 14516 df-concat 14572 df-s1 14597 df-substr 14642 df-pfx 14672 df-csh 14790 df-s2 14850 df-s3 14851 df-tocyc 32987 |
This theorem is referenced by: cyc3co2 33020 |
Copyright terms: Public domain | W3C validator |