Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cyc3fv2 | Structured version Visualization version GIF version |
Description: Function value of a 3-cycle at the second point. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
Ref | Expression |
---|---|
cycpm3.c | ⊢ 𝐶 = (toCyc‘𝐷) |
cycpm3.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
cycpm3.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
cycpm3.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
cycpm3.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
cycpm3.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
cycpm3.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
cycpm3.2 | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
cycpm3.3 | ⊢ (𝜑 → 𝐾 ≠ 𝐼) |
Ref | Expression |
---|---|
cyc3fv2 | ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐽) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycpm3.c | . . 3 ⊢ 𝐶 = (toCyc‘𝐷) | |
2 | cycpm3.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
3 | cycpm3.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
4 | cycpm3.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
5 | cycpm3.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
6 | 3, 4, 5 | s3cld 14684 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷) |
7 | cycpm3.1 | . . . 4 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
8 | cycpm3.2 | . . . 4 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
9 | cycpm3.3 | . . . 4 ⊢ (𝜑 → 𝐾 ≠ 𝐼) | |
10 | 3, 4, 5, 7, 8, 9 | s3f1 31506 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉–1-1→𝐷) |
11 | 1ex 11076 | . . . . . 6 ⊢ 1 ∈ V | |
12 | 11 | prid2 4715 | . . . . 5 ⊢ 1 ∈ {0, 1} |
13 | s3len 14706 | . . . . . . . . 9 ⊢ (♯‘〈“𝐼𝐽𝐾”〉) = 3 | |
14 | 13 | oveq1i 7351 | . . . . . . . 8 ⊢ ((♯‘〈“𝐼𝐽𝐾”〉) − 1) = (3 − 1) |
15 | 3m1e2 12206 | . . . . . . . 8 ⊢ (3 − 1) = 2 | |
16 | 14, 15 | eqtri 2765 | . . . . . . 7 ⊢ ((♯‘〈“𝐼𝐽𝐾”〉) − 1) = 2 |
17 | 16 | oveq2i 7352 | . . . . . 6 ⊢ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1)) = (0..^2) |
18 | fzo0to2pr 13577 | . . . . . 6 ⊢ (0..^2) = {0, 1} | |
19 | 17, 18 | eqtri 2765 | . . . . 5 ⊢ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1)) = {0, 1} |
20 | 12, 19 | eleqtrri 2837 | . . . 4 ⊢ 1 ∈ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1)) |
21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1))) |
22 | 1, 2, 6, 10, 21 | cycpmfv1 31665 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘(〈“𝐼𝐽𝐾”〉‘1)) = (〈“𝐼𝐽𝐾”〉‘(1 + 1))) |
23 | s3fv1 14704 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) | |
24 | 4, 23 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) |
25 | 24 | fveq2d 6833 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘(〈“𝐼𝐽𝐾”〉‘1)) = ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐽)) |
26 | 1p1e2 12203 | . . . 4 ⊢ (1 + 1) = 2 | |
27 | 26 | fveq2i 6832 | . . 3 ⊢ (〈“𝐼𝐽𝐾”〉‘(1 + 1)) = (〈“𝐼𝐽𝐾”〉‘2) |
28 | s3fv2 14705 | . . . 4 ⊢ (𝐾 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) | |
29 | 5, 28 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) |
30 | 27, 29 | eqtrid 2789 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘(1 + 1)) = 𝐾) |
31 | 22, 25, 30 | 3eqtr3d 2785 | 1 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐽) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 {cpr 4579 ‘cfv 6483 (class class class)co 7341 0cc0 10976 1c1 10977 + caddc 10979 − cmin 11310 2c2 12133 3c3 12134 ..^cfzo 13487 ♯chash 14149 〈“cs3 14654 SymGrpcsymg 19070 toCycctocyc 31658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-er 8573 df-map 8692 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-sup 9303 df-inf 9304 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-n0 12339 df-z 12425 df-uz 12688 df-rp 12836 df-fz 13345 df-fzo 13488 df-fl 13617 df-mod 13695 df-hash 14150 df-word 14322 df-concat 14378 df-s1 14403 df-substr 14452 df-pfx 14482 df-csh 14600 df-s2 14660 df-s3 14661 df-tocyc 31659 |
This theorem is referenced by: cyc3co2 31692 |
Copyright terms: Public domain | W3C validator |