Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cyc3fv2 | Structured version Visualization version GIF version |
Description: Function value of a 3-cycle at the second point. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
Ref | Expression |
---|---|
cycpm3.c | ⊢ 𝐶 = (toCyc‘𝐷) |
cycpm3.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
cycpm3.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
cycpm3.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
cycpm3.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
cycpm3.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
cycpm3.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
cycpm3.2 | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
cycpm3.3 | ⊢ (𝜑 → 𝐾 ≠ 𝐼) |
Ref | Expression |
---|---|
cyc3fv2 | ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐽) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycpm3.c | . . 3 ⊢ 𝐶 = (toCyc‘𝐷) | |
2 | cycpm3.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
3 | cycpm3.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
4 | cycpm3.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
5 | cycpm3.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
6 | 3, 4, 5 | s3cld 14585 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷) |
7 | cycpm3.1 | . . . 4 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
8 | cycpm3.2 | . . . 4 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
9 | cycpm3.3 | . . . 4 ⊢ (𝜑 → 𝐾 ≠ 𝐼) | |
10 | 3, 4, 5, 7, 8, 9 | s3f1 31221 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉–1-1→𝐷) |
11 | 1ex 10971 | . . . . . 6 ⊢ 1 ∈ V | |
12 | 11 | prid2 4699 | . . . . 5 ⊢ 1 ∈ {0, 1} |
13 | s3len 14607 | . . . . . . . . 9 ⊢ (♯‘〈“𝐼𝐽𝐾”〉) = 3 | |
14 | 13 | oveq1i 7285 | . . . . . . . 8 ⊢ ((♯‘〈“𝐼𝐽𝐾”〉) − 1) = (3 − 1) |
15 | 3m1e2 12101 | . . . . . . . 8 ⊢ (3 − 1) = 2 | |
16 | 14, 15 | eqtri 2766 | . . . . . . 7 ⊢ ((♯‘〈“𝐼𝐽𝐾”〉) − 1) = 2 |
17 | 16 | oveq2i 7286 | . . . . . 6 ⊢ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1)) = (0..^2) |
18 | fzo0to2pr 13472 | . . . . . 6 ⊢ (0..^2) = {0, 1} | |
19 | 17, 18 | eqtri 2766 | . . . . 5 ⊢ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1)) = {0, 1} |
20 | 12, 19 | eleqtrri 2838 | . . . 4 ⊢ 1 ∈ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1)) |
21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ (0..^((♯‘〈“𝐼𝐽𝐾”〉) − 1))) |
22 | 1, 2, 6, 10, 21 | cycpmfv1 31380 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘(〈“𝐼𝐽𝐾”〉‘1)) = (〈“𝐼𝐽𝐾”〉‘(1 + 1))) |
23 | s3fv1 14605 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) | |
24 | 4, 23 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) |
25 | 24 | fveq2d 6778 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘(〈“𝐼𝐽𝐾”〉‘1)) = ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐽)) |
26 | 1p1e2 12098 | . . . 4 ⊢ (1 + 1) = 2 | |
27 | 26 | fveq2i 6777 | . . 3 ⊢ (〈“𝐼𝐽𝐾”〉‘(1 + 1)) = (〈“𝐼𝐽𝐾”〉‘2) |
28 | s3fv2 14606 | . . . 4 ⊢ (𝐾 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) | |
29 | 5, 28 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) |
30 | 27, 29 | eqtrid 2790 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘(1 + 1)) = 𝐾) |
31 | 22, 25, 30 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐽) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {cpr 4563 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 − cmin 11205 2c2 12028 3c3 12029 ..^cfzo 13382 ♯chash 14044 〈“cs3 14555 SymGrpcsymg 18974 toCycctocyc 31373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-substr 14354 df-pfx 14384 df-csh 14502 df-s2 14561 df-s3 14562 df-tocyc 31374 |
This theorem is referenced by: cyc3co2 31407 |
Copyright terms: Public domain | W3C validator |