Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0sqeq1 | Structured version Visualization version GIF version |
Description: A natural number with square one is equal to one. (Contributed by Thierry Arnoux, 2-Feb-2020.) (Proof shortened by Thierry Arnoux, 6-Jun-2023.) |
Ref | Expression |
---|---|
nn0sqeq1 | ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁↑2) = 1) → 𝑁 = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁↑2) = 1) → (𝑁↑2) = 1) | |
2 | 1 | fveq2d 6667 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁↑2) = 1) → (√‘(𝑁↑2)) = (√‘1)) |
3 | nn0re 11956 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
4 | nn0ge0 11972 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
5 | sqrtsq 14690 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → (√‘(𝑁↑2)) = 𝑁) | |
6 | 3, 4, 5 | syl2anc 587 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (√‘(𝑁↑2)) = 𝑁) |
7 | 6 | adantr 484 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁↑2) = 1) → (√‘(𝑁↑2)) = 𝑁) |
8 | sqrt1 14692 | . . 3 ⊢ (√‘1) = 1 | |
9 | 8 | a1i 11 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁↑2) = 1) → (√‘1) = 1) |
10 | 2, 7, 9 | 3eqtr3d 2801 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁↑2) = 1) → 𝑁 = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 class class class wbr 5036 ‘cfv 6340 (class class class)co 7156 ℝcr 10587 0cc0 10588 1c1 10589 ≤ cle 10727 2c2 11742 ℕ0cn0 11947 ↑cexp 13492 √csqrt 14653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-sup 8952 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-n0 11948 df-z 12034 df-uz 12296 df-rp 12444 df-seq 13432 df-exp 13493 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 |
This theorem is referenced by: 2sq2 26130 2sqcoprm 26132 |
Copyright terms: Public domain | W3C validator |