![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axcontlem11 | Structured version Visualization version GIF version |
Description: Lemma for axcont 29006. Eliminate the hypotheses from axcontlem10 29003. (Contributed by Scott Fenton, 20-Jun-2013.) |
Ref | Expression |
---|---|
axcontlem11 | ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4879 | . . . . 5 ⊢ (𝑞 = 𝑝 → 〈𝑍, 𝑞〉 = 〈𝑍, 𝑝〉) | |
2 | 1 | breq2d 5160 | . . . 4 ⊢ (𝑞 = 𝑝 → (𝑈 Btwn 〈𝑍, 𝑞〉 ↔ 𝑈 Btwn 〈𝑍, 𝑝〉)) |
3 | breq1 5151 | . . . 4 ⊢ (𝑞 = 𝑝 → (𝑞 Btwn 〈𝑍, 𝑈〉 ↔ 𝑝 Btwn 〈𝑍, 𝑈〉)) | |
4 | 2, 3 | orbi12d 918 | . . 3 ⊢ (𝑞 = 𝑝 → ((𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉) ↔ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉))) |
5 | 4 | cbvrabv 3444 | . 2 ⊢ {𝑞 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉)} = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} |
6 | eqid 2735 | . . 3 ⊢ {〈𝑧, 𝑟〉 ∣ (𝑧 ∈ {𝑞 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉)} ∧ (𝑟 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑧‘𝑗) = (((1 − 𝑟) · (𝑍‘𝑗)) + (𝑟 · (𝑈‘𝑗)))))} = {〈𝑧, 𝑟〉 ∣ (𝑧 ∈ {𝑞 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉)} ∧ (𝑟 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑧‘𝑗) = (((1 − 𝑟) · (𝑍‘𝑗)) + (𝑟 · (𝑈‘𝑗)))))} | |
7 | 6 | axcontlem1 28994 | . 2 ⊢ {〈𝑧, 𝑟〉 ∣ (𝑧 ∈ {𝑞 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉)} ∧ (𝑟 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑧‘𝑗) = (((1 − 𝑟) · (𝑍‘𝑗)) + (𝑟 · (𝑈‘𝑗)))))} = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ {𝑞 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉)} ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} |
8 | 5, 7 | axcontlem10 29003 | 1 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 {crab 3433 ⊆ wss 3963 ∅c0 4339 〈cop 4637 class class class wbr 5148 {copab 5210 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 +∞cpnf 11290 − cmin 11490 ℕcn 12264 [,)cico 13386 ...cfz 13544 𝔼cee 28918 Btwn cbtwn 28919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-z 12612 df-uz 12877 df-ico 13390 df-icc 13391 df-fz 13545 df-ee 28921 df-btwn 28922 |
This theorem is referenced by: axcontlem12 29005 |
Copyright terms: Public domain | W3C validator |