| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axcontlem11 | Structured version Visualization version GIF version | ||
| Description: Lemma for axcont 28955. Eliminate the hypotheses from axcontlem10 28952. (Contributed by Scott Fenton, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| axcontlem11 | ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq2 4826 | . . . . 5 ⊢ (𝑞 = 𝑝 → 〈𝑍, 𝑞〉 = 〈𝑍, 𝑝〉) | |
| 2 | 1 | breq2d 5103 | . . . 4 ⊢ (𝑞 = 𝑝 → (𝑈 Btwn 〈𝑍, 𝑞〉 ↔ 𝑈 Btwn 〈𝑍, 𝑝〉)) |
| 3 | breq1 5094 | . . . 4 ⊢ (𝑞 = 𝑝 → (𝑞 Btwn 〈𝑍, 𝑈〉 ↔ 𝑝 Btwn 〈𝑍, 𝑈〉)) | |
| 4 | 2, 3 | orbi12d 918 | . . 3 ⊢ (𝑞 = 𝑝 → ((𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉) ↔ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉))) |
| 5 | 4 | cbvrabv 3405 | . 2 ⊢ {𝑞 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉)} = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} |
| 6 | eqid 2731 | . . 3 ⊢ {〈𝑧, 𝑟〉 ∣ (𝑧 ∈ {𝑞 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉)} ∧ (𝑟 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑧‘𝑗) = (((1 − 𝑟) · (𝑍‘𝑗)) + (𝑟 · (𝑈‘𝑗)))))} = {〈𝑧, 𝑟〉 ∣ (𝑧 ∈ {𝑞 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉)} ∧ (𝑟 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑧‘𝑗) = (((1 − 𝑟) · (𝑍‘𝑗)) + (𝑟 · (𝑈‘𝑗)))))} | |
| 7 | 6 | axcontlem1 28943 | . 2 ⊢ {〈𝑧, 𝑟〉 ∣ (𝑧 ∈ {𝑞 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉)} ∧ (𝑟 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑧‘𝑗) = (((1 − 𝑟) · (𝑍‘𝑗)) + (𝑟 · (𝑈‘𝑗)))))} = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ {𝑞 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉)} ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} |
| 8 | 5, 7 | axcontlem10 28952 | 1 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 {crab 3395 ⊆ wss 3902 ∅c0 4283 〈cop 4582 class class class wbr 5091 {copab 5153 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 +∞cpnf 11143 − cmin 11344 ℕcn 12125 [,)cico 13247 ...cfz 13407 𝔼cee 28867 Btwn cbtwn 28868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-z 12469 df-uz 12733 df-ico 13251 df-icc 13252 df-fz 13408 df-ee 28870 df-btwn 28871 |
| This theorem is referenced by: axcontlem12 28954 |
| Copyright terms: Public domain | W3C validator |