| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axcontlem11 | Structured version Visualization version GIF version | ||
| Description: Lemma for axcont 28939. Eliminate the hypotheses from axcontlem10 28936. (Contributed by Scott Fenton, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| axcontlem11 | ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq2 4828 | . . . . 5 ⊢ (𝑞 = 𝑝 → 〈𝑍, 𝑞〉 = 〈𝑍, 𝑝〉) | |
| 2 | 1 | breq2d 5107 | . . . 4 ⊢ (𝑞 = 𝑝 → (𝑈 Btwn 〈𝑍, 𝑞〉 ↔ 𝑈 Btwn 〈𝑍, 𝑝〉)) |
| 3 | breq1 5098 | . . . 4 ⊢ (𝑞 = 𝑝 → (𝑞 Btwn 〈𝑍, 𝑈〉 ↔ 𝑝 Btwn 〈𝑍, 𝑈〉)) | |
| 4 | 2, 3 | orbi12d 918 | . . 3 ⊢ (𝑞 = 𝑝 → ((𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉) ↔ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉))) |
| 5 | 4 | cbvrabv 3407 | . 2 ⊢ {𝑞 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉)} = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} |
| 6 | eqid 2729 | . . 3 ⊢ {〈𝑧, 𝑟〉 ∣ (𝑧 ∈ {𝑞 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉)} ∧ (𝑟 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑧‘𝑗) = (((1 − 𝑟) · (𝑍‘𝑗)) + (𝑟 · (𝑈‘𝑗)))))} = {〈𝑧, 𝑟〉 ∣ (𝑧 ∈ {𝑞 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉)} ∧ (𝑟 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑧‘𝑗) = (((1 − 𝑟) · (𝑍‘𝑗)) + (𝑟 · (𝑈‘𝑗)))))} | |
| 7 | 6 | axcontlem1 28927 | . 2 ⊢ {〈𝑧, 𝑟〉 ∣ (𝑧 ∈ {𝑞 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉)} ∧ (𝑟 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑧‘𝑗) = (((1 − 𝑟) · (𝑍‘𝑗)) + (𝑟 · (𝑈‘𝑗)))))} = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ {𝑞 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑞〉 ∨ 𝑞 Btwn 〈𝑍, 𝑈〉)} ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} |
| 8 | 5, 7 | axcontlem10 28936 | 1 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3396 ⊆ wss 3905 ∅c0 4286 〈cop 4585 class class class wbr 5095 {copab 5157 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 +∞cpnf 11165 − cmin 11365 ℕcn 12146 [,)cico 13268 ...cfz 13428 𝔼cee 28851 Btwn cbtwn 28852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-z 12490 df-uz 12754 df-ico 13272 df-icc 13273 df-fz 13429 df-ee 28854 df-btwn 28855 |
| This theorem is referenced by: axcontlem12 28938 |
| Copyright terms: Public domain | W3C validator |