Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brfi1ind | Structured version Visualization version GIF version |
Description: Properties of a binary relation with a finite first component, proven by finite induction on the size of the first component. (Contributed by Alexander van der Vekens, 7-Jan-2018.) (Revised by AV, 28-Mar-2021.) |
Ref | Expression |
---|---|
brfi1ind.r | ⊢ Rel 𝐺 |
brfi1ind.f | ⊢ 𝐹 ∈ V |
brfi1ind.1 | ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) |
brfi1ind.2 | ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) |
brfi1ind.3 | ⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹) |
brfi1ind.4 | ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) |
brfi1ind.base | ⊢ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0) → 𝜓) |
brfi1ind.step | ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
Ref | Expression |
---|---|
brfi1ind | ⊢ ((𝑉𝐺𝐸 ∧ 𝑉 ∈ Fin) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashge0 14092 | . . 3 ⊢ (𝑉 ∈ Fin → 0 ≤ (♯‘𝑉)) | |
2 | 1 | adantl 482 | . 2 ⊢ ((𝑉𝐺𝐸 ∧ 𝑉 ∈ Fin) → 0 ≤ (♯‘𝑉)) |
3 | brfi1ind.r | . . 3 ⊢ Rel 𝐺 | |
4 | brfi1ind.f | . . 3 ⊢ 𝐹 ∈ V | |
5 | 0nn0 12240 | . . 3 ⊢ 0 ∈ ℕ0 | |
6 | brfi1ind.1 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) | |
7 | brfi1ind.2 | . . 3 ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) | |
8 | brfi1ind.3 | . . 3 ⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹) | |
9 | brfi1ind.4 | . . 3 ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) | |
10 | brfi1ind.base | . . 3 ⊢ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0) → 𝜓) | |
11 | brfi1ind.step | . . 3 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) | |
12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | brfi1uzind 14202 | . 2 ⊢ ((𝑉𝐺𝐸 ∧ 𝑉 ∈ Fin ∧ 0 ≤ (♯‘𝑉)) → 𝜑) |
13 | 2, 12 | mpd3an3 1461 | 1 ⊢ ((𝑉𝐺𝐸 ∧ 𝑉 ∈ Fin) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∖ cdif 3889 {csn 4567 class class class wbr 5079 Rel wrel 5594 ‘cfv 6431 (class class class)co 7269 Fincfn 8708 0cc0 10864 1c1 10865 + caddc 10867 ≤ cle 11003 ℕ0cn0 12225 ♯chash 14034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-1st 7818 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-1o 8282 df-oadd 8286 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-fin 8712 df-dju 9652 df-card 9690 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-n0 12226 df-xnn0 12298 df-z 12312 df-uz 12574 df-fz 13231 df-hash 14035 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |