Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfi1ind Structured version   Visualization version   GIF version

Theorem brfi1ind 13479
 Description: Properties of a binary relation with a finite first component, proven by finite induction on the size of the first component. (Contributed by Alexander van der Vekens, 7-Jan-2018.) (Revised by AV, 28-Mar-2021.)
Hypotheses
Ref Expression
brfi1ind.r Rel 𝐺
brfi1ind.f 𝐹 ∈ V
brfi1ind.1 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
brfi1ind.2 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
brfi1ind.3 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
brfi1ind.4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
brfi1ind.base ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0) → 𝜓)
brfi1ind.step ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
Assertion
Ref Expression
brfi1ind ((𝑉𝐺𝐸𝑉 ∈ Fin) → 𝜑)
Distinct variable groups:   𝑒,𝐸,𝑛,𝑣   𝑓,𝐹,𝑤   𝑒,𝐺,𝑓,𝑛,𝑣,𝑤,𝑦   𝑒,𝑉,𝑛,𝑣   𝜓,𝑓,𝑛,𝑤,𝑦   𝜃,𝑒,𝑛,𝑣   𝜒,𝑓,𝑤   𝜑,𝑒,𝑛,𝑣
Allowed substitution hints:   𝜑(𝑦,𝑤,𝑓)   𝜓(𝑣,𝑒)   𝜒(𝑦,𝑣,𝑒,𝑛)   𝜃(𝑦,𝑤,𝑓)   𝐸(𝑦,𝑤,𝑓)   𝐹(𝑦,𝑣,𝑒,𝑛)   𝑉(𝑦,𝑤,𝑓)

Proof of Theorem brfi1ind
StepHypRef Expression
1 hashge0 13374 . . 3 (𝑉 ∈ Fin → 0 ≤ (♯‘𝑉))
21adantl 467 . 2 ((𝑉𝐺𝐸𝑉 ∈ Fin) → 0 ≤ (♯‘𝑉))
3 brfi1ind.r . . 3 Rel 𝐺
4 brfi1ind.f . . 3 𝐹 ∈ V
5 0nn0 11510 . . 3 0 ∈ ℕ0
6 brfi1ind.1 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
7 brfi1ind.2 . . 3 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
8 brfi1ind.3 . . 3 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
9 brfi1ind.4 . . 3 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
10 brfi1ind.base . . 3 ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0) → 𝜓)
11 brfi1ind.step . . 3 ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
123, 4, 5, 6, 7, 8, 9, 10, 11brfi1uzind 13478 . 2 ((𝑉𝐺𝐸𝑉 ∈ Fin ∧ 0 ≤ (♯‘𝑉)) → 𝜑)
132, 12mpd3an3 1573 1 ((𝑉𝐺𝐸𝑉 ∈ Fin) → 𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145  Vcvv 3351   ∖ cdif 3720  {csn 4316   class class class wbr 4786  Rel wrel 5254  ‘cfv 6029  (class class class)co 6792  Fincfn 8109  0cc0 10138  1c1 10139   + caddc 10141   ≤ cle 10277  ℕ0cn0 11495  ♯chash 13317 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11496  df-xnn0 11567  df-z 11581  df-uz 11890  df-fz 12530  df-hash 13318 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator