![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brfi1ind | Structured version Visualization version GIF version |
Description: Properties of a binary relation with a finite first component, proven by finite induction on the size of the first component. (Contributed by Alexander van der Vekens, 7-Jan-2018.) (Revised by AV, 28-Mar-2021.) |
Ref | Expression |
---|---|
brfi1ind.r | ⊢ Rel 𝐺 |
brfi1ind.f | ⊢ 𝐹 ∈ V |
brfi1ind.1 | ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) |
brfi1ind.2 | ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) |
brfi1ind.3 | ⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹) |
brfi1ind.4 | ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) |
brfi1ind.base | ⊢ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0) → 𝜓) |
brfi1ind.step | ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
Ref | Expression |
---|---|
brfi1ind | ⊢ ((𝑉𝐺𝐸 ∧ 𝑉 ∈ Fin) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashge0 14347 | . . 3 ⊢ (𝑉 ∈ Fin → 0 ≤ (♯‘𝑉)) | |
2 | 1 | adantl 483 | . 2 ⊢ ((𝑉𝐺𝐸 ∧ 𝑉 ∈ Fin) → 0 ≤ (♯‘𝑉)) |
3 | brfi1ind.r | . . 3 ⊢ Rel 𝐺 | |
4 | brfi1ind.f | . . 3 ⊢ 𝐹 ∈ V | |
5 | 0nn0 12487 | . . 3 ⊢ 0 ∈ ℕ0 | |
6 | brfi1ind.1 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) | |
7 | brfi1ind.2 | . . 3 ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) | |
8 | brfi1ind.3 | . . 3 ⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹) | |
9 | brfi1ind.4 | . . 3 ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) | |
10 | brfi1ind.base | . . 3 ⊢ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0) → 𝜓) | |
11 | brfi1ind.step | . . 3 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) | |
12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | brfi1uzind 14459 | . 2 ⊢ ((𝑉𝐺𝐸 ∧ 𝑉 ∈ Fin ∧ 0 ≤ (♯‘𝑉)) → 𝜑) |
13 | 2, 12 | mpd3an3 1463 | 1 ⊢ ((𝑉𝐺𝐸 ∧ 𝑉 ∈ Fin) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∖ cdif 3946 {csn 4629 class class class wbr 5149 Rel wrel 5682 ‘cfv 6544 (class class class)co 7409 Fincfn 8939 0cc0 11110 1c1 11111 + caddc 11113 ≤ cle 11249 ℕ0cn0 12472 ♯chash 14290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-xnn0 12545 df-z 12559 df-uz 12823 df-fz 13485 df-hash 14291 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |