Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrinvcl Structured version   Visualization version   GIF version

Theorem constrinvcl 33759
Description: Constructible numbers are closed under complex inverse. Item (4) of Theorem 7.10 of [Stewart] p. 96 (Contributed by Thierry Arnoux, 5-Nov-2025.)
Hypotheses
Ref Expression
constrinvcl.1 (𝜑𝑋 ∈ Constr)
constrinvcl.2 (𝜑𝑋 ≠ 0)
Assertion
Ref Expression
constrinvcl (𝜑 → (1 / 𝑋) ∈ Constr)

Proof of Theorem constrinvcl
StepHypRef Expression
1 constrinvcl.1 . . . 4 (𝜑𝑋 ∈ Constr)
21adantr 480 . . 3 ((𝜑𝑋 ∈ ℝ) → 𝑋 ∈ Constr)
3 constrinvcl.2 . . . 4 (𝜑𝑋 ≠ 0)
43adantr 480 . . 3 ((𝜑𝑋 ∈ ℝ) → 𝑋 ≠ 0)
5 simpr 484 . . 3 ((𝜑𝑋 ∈ ℝ) → 𝑋 ∈ ℝ)
62, 4, 5constrreinvcl 33758 . 2 ((𝜑𝑋 ∈ ℝ) → (1 / 𝑋) ∈ Constr)
7 1cnd 11129 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
81constrcn 33746 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
97, 8, 3absdivd 15384 . . . . . . 7 (𝜑 → (abs‘(1 / 𝑋)) = ((abs‘1) / (abs‘𝑋)))
10 abs1 15223 . . . . . . . 8 (abs‘1) = 1
1110oveq1i 7363 . . . . . . 7 ((abs‘1) / (abs‘𝑋)) = (1 / (abs‘𝑋))
129, 11eqtr2di 2781 . . . . . 6 (𝜑 → (1 / (abs‘𝑋)) = (abs‘(1 / 𝑋)))
138, 3reccld 11912 . . . . . . 7 (𝜑 → (1 / 𝑋) ∈ ℂ)
148, 3recne0d 11913 . . . . . . 7 (𝜑 → (1 / 𝑋) ≠ 0)
1513, 14efiargd 32709 . . . . . 6 (𝜑 → (exp‘(i · (ℑ‘(log‘(1 / 𝑋))))) = ((1 / 𝑋) / (abs‘(1 / 𝑋))))
1612, 15oveq12d 7371 . . . . 5 (𝜑 → ((1 / (abs‘𝑋)) · (exp‘(i · (ℑ‘(log‘(1 / 𝑋)))))) = ((abs‘(1 / 𝑋)) · ((1 / 𝑋) / (abs‘(1 / 𝑋)))))
1713abscld 15365 . . . . . . 7 (𝜑 → (abs‘(1 / 𝑋)) ∈ ℝ)
1817recnd 11162 . . . . . 6 (𝜑 → (abs‘(1 / 𝑋)) ∈ ℂ)
1913, 14absne0d 15376 . . . . . 6 (𝜑 → (abs‘(1 / 𝑋)) ≠ 0)
2013, 18, 19divcan2d 11921 . . . . 5 (𝜑 → ((abs‘(1 / 𝑋)) · ((1 / 𝑋) / (abs‘(1 / 𝑋)))) = (1 / 𝑋))
2116, 20eqtrd 2764 . . . 4 (𝜑 → ((1 / (abs‘𝑋)) · (exp‘(i · (ℑ‘(log‘(1 / 𝑋)))))) = (1 / 𝑋))
2221adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → ((1 / (abs‘𝑋)) · (exp‘(i · (ℑ‘(log‘(1 / 𝑋)))))) = (1 / 𝑋))
23 0zd 12502 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
2423zconstr 33750 . . . . . . 7 (𝜑 → 0 ∈ Constr)
25 1zzd 12525 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
2625zconstr 33750 . . . . . . 7 (𝜑 → 1 ∈ Constr)
278abscld 15365 . . . . . . 7 (𝜑 → (abs‘𝑋) ∈ ℝ)
2827recnd 11162 . . . . . . 7 (𝜑 → (abs‘𝑋) ∈ ℂ)
297subid1d 11483 . . . . . . . . . . 11 (𝜑 → (1 − 0) = 1)
3029, 7eqeltrd 2828 . . . . . . . . . 10 (𝜑 → (1 − 0) ∈ ℂ)
3128, 30mulcld 11154 . . . . . . . . 9 (𝜑 → ((abs‘𝑋) · (1 − 0)) ∈ ℂ)
3231addlidd 11336 . . . . . . . 8 (𝜑 → (0 + ((abs‘𝑋) · (1 − 0))) = ((abs‘𝑋) · (1 − 0)))
3329oveq2d 7369 . . . . . . . 8 (𝜑 → ((abs‘𝑋) · (1 − 0)) = ((abs‘𝑋) · 1))
3428mulridd 11151 . . . . . . . 8 (𝜑 → ((abs‘𝑋) · 1) = (abs‘𝑋))
3532, 33, 343eqtrrd 2769 . . . . . . 7 (𝜑 → (abs‘𝑋) = (0 + ((abs‘𝑋) · (1 − 0))))
368absge0d 15373 . . . . . . . . 9 (𝜑 → 0 ≤ (abs‘𝑋))
3727, 36absidd 15349 . . . . . . . 8 (𝜑 → (abs‘(abs‘𝑋)) = (abs‘𝑋))
3828subid1d 11483 . . . . . . . . 9 (𝜑 → ((abs‘𝑋) − 0) = (abs‘𝑋))
3938fveq2d 6830 . . . . . . . 8 (𝜑 → (abs‘((abs‘𝑋) − 0)) = (abs‘(abs‘𝑋)))
408subid1d 11483 . . . . . . . . 9 (𝜑 → (𝑋 − 0) = 𝑋)
4140fveq2d 6830 . . . . . . . 8 (𝜑 → (abs‘(𝑋 − 0)) = (abs‘𝑋))
4237, 39, 413eqtr4d 2774 . . . . . . 7 (𝜑 → (abs‘((abs‘𝑋) − 0)) = (abs‘(𝑋 − 0)))
4324, 26, 24, 1, 24, 27, 28, 35, 42constrlccl 33743 . . . . . 6 (𝜑 → (abs‘𝑋) ∈ Constr)
448, 3absne0d 15376 . . . . . 6 (𝜑 → (abs‘𝑋) ≠ 0)
4543, 44, 27constrreinvcl 33758 . . . . 5 (𝜑 → (1 / (abs‘𝑋)) ∈ Constr)
4645adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (1 / (abs‘𝑋)) ∈ Constr)
478adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → 𝑋 ∈ ℂ)
483adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → 𝑋 ≠ 0)
498adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ -𝑋 ∈ ℝ+) → 𝑋 ∈ ℂ)
50 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ -𝑋 ∈ ℝ+) → -𝑋 ∈ ℝ+)
5150rpred 12956 . . . . . . . . . . . 12 ((𝜑 ∧ -𝑋 ∈ ℝ+) → -𝑋 ∈ ℝ)
5249, 51negrebd 11493 . . . . . . . . . . 11 ((𝜑 ∧ -𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ)
5352stoic1a 1772 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → ¬ -𝑋 ∈ ℝ+)
5447, 48, 53arginv 32710 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (ℑ‘(log‘(1 / 𝑋))) = -(ℑ‘(log‘𝑋)))
5547, 48, 53argcj 32711 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (ℑ‘(log‘(∗‘𝑋))) = -(ℑ‘(log‘𝑋)))
5654, 55eqtr4d 2767 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (ℑ‘(log‘(1 / 𝑋))) = (ℑ‘(log‘(∗‘𝑋))))
5756oveq2d 7369 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (i · (ℑ‘(log‘(1 / 𝑋)))) = (i · (ℑ‘(log‘(∗‘𝑋)))))
5857fveq2d 6830 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (exp‘(i · (ℑ‘(log‘(1 / 𝑋))))) = (exp‘(i · (ℑ‘(log‘(∗‘𝑋))))))
598cjcld 15122 . . . . . . . 8 (𝜑 → (∗‘𝑋) ∈ ℂ)
608, 3cjne0d 15129 . . . . . . . 8 (𝜑 → (∗‘𝑋) ≠ 0)
6159, 60efiargd 32709 . . . . . . 7 (𝜑 → (exp‘(i · (ℑ‘(log‘(∗‘𝑋))))) = ((∗‘𝑋) / (abs‘(∗‘𝑋))))
6261adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (exp‘(i · (ℑ‘(log‘(∗‘𝑋))))) = ((∗‘𝑋) / (abs‘(∗‘𝑋))))
6358, 62eqtrd 2764 . . . . 5 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (exp‘(i · (ℑ‘(log‘(1 / 𝑋))))) = ((∗‘𝑋) / (abs‘(∗‘𝑋))))
641adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → 𝑋 ∈ Constr)
6564constrcjcl 33754 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (∗‘𝑋) ∈ Constr)
6660adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (∗‘𝑋) ≠ 0)
6765, 66constrdircl 33751 . . . . 5 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → ((∗‘𝑋) / (abs‘(∗‘𝑋))) ∈ Constr)
6863, 67eqeltrd 2828 . . . 4 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (exp‘(i · (ℑ‘(log‘(1 / 𝑋))))) ∈ Constr)
6946, 68constrmulcl 33757 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → ((1 / (abs‘𝑋)) · (exp‘(i · (ℑ‘(log‘(1 / 𝑋)))))) ∈ Constr)
7022, 69eqeltrrd 2829 . 2 ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (1 / 𝑋) ∈ Constr)
716, 70pm2.61dan 812 1 (𝜑 → (1 / 𝑋) ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029  ici 11030   + caddc 11031   · cmul 11033  cmin 11366  -cneg 11367   / cdiv 11796  +crp 12912  ccj 15022  cim 15024  abscabs 15160  expce 15987  logclog 26480  Constrcconstr 33715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ioc 13272  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-fac 14200  df-bc 14229  df-hash 14257  df-shft 14993  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-limsup 15397  df-clim 15414  df-rlim 15415  df-sum 15613  df-ef 15993  df-sin 15995  df-cos 15996  df-pi 15998  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-cntz 19215  df-cmn 19680  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-lp 23040  df-perf 23041  df-cn 23131  df-cnp 23132  df-haus 23219  df-tx 23466  df-hmeo 23659  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24788  df-limc 25784  df-dv 25785  df-log 26482  df-constr 33716
This theorem is referenced by:  constrsdrg  33761  constrresqrtcl  33763  cos9thpinconstr  33777
  Copyright terms: Public domain W3C validator