Proof of Theorem constrinvcl
| Step | Hyp | Ref
| Expression |
| 1 | | constrinvcl.1 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ Constr) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ ℝ) → 𝑋 ∈ Constr) |
| 3 | | constrinvcl.2 |
. . . 4
⊢ (𝜑 → 𝑋 ≠ 0) |
| 4 | 3 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ ℝ) → 𝑋 ≠ 0) |
| 5 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ ℝ) → 𝑋 ∈ ℝ) |
| 6 | 2, 4, 5 | constrreinvcl 33722 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ ℝ) → (1 / 𝑋) ∈
Constr) |
| 7 | | 1cnd 11222 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℂ) |
| 8 | 1 | constrcn 33710 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 9 | 7, 8, 3 | absdivd 15461 |
. . . . . . 7
⊢ (𝜑 → (abs‘(1 / 𝑋)) = ((abs‘1) /
(abs‘𝑋))) |
| 10 | | abs1 15303 |
. . . . . . . 8
⊢
(abs‘1) = 1 |
| 11 | 10 | oveq1i 7409 |
. . . . . . 7
⊢
((abs‘1) / (abs‘𝑋)) = (1 / (abs‘𝑋)) |
| 12 | 9, 11 | eqtr2di 2786 |
. . . . . 6
⊢ (𝜑 → (1 / (abs‘𝑋)) = (abs‘(1 / 𝑋))) |
| 13 | 8, 3 | reccld 12002 |
. . . . . . 7
⊢ (𝜑 → (1 / 𝑋) ∈ ℂ) |
| 14 | 8, 3 | recne0d 12003 |
. . . . . . 7
⊢ (𝜑 → (1 / 𝑋) ≠ 0) |
| 15 | 13, 14 | efiargd 32657 |
. . . . . 6
⊢ (𝜑 → (exp‘(i ·
(ℑ‘(log‘(1 / 𝑋))))) = ((1 / 𝑋) / (abs‘(1 / 𝑋)))) |
| 16 | 12, 15 | oveq12d 7417 |
. . . . 5
⊢ (𝜑 → ((1 / (abs‘𝑋)) · (exp‘(i
· (ℑ‘(log‘(1 / 𝑋)))))) = ((abs‘(1 / 𝑋)) · ((1 / 𝑋) / (abs‘(1 / 𝑋))))) |
| 17 | 13 | abscld 15442 |
. . . . . . 7
⊢ (𝜑 → (abs‘(1 / 𝑋)) ∈
ℝ) |
| 18 | 17 | recnd 11255 |
. . . . . 6
⊢ (𝜑 → (abs‘(1 / 𝑋)) ∈
ℂ) |
| 19 | 13, 14 | absne0d 15453 |
. . . . . 6
⊢ (𝜑 → (abs‘(1 / 𝑋)) ≠ 0) |
| 20 | 13, 18, 19 | divcan2d 12011 |
. . . . 5
⊢ (𝜑 → ((abs‘(1 / 𝑋)) · ((1 / 𝑋) / (abs‘(1 / 𝑋)))) = (1 / 𝑋)) |
| 21 | 16, 20 | eqtrd 2769 |
. . . 4
⊢ (𝜑 → ((1 / (abs‘𝑋)) · (exp‘(i
· (ℑ‘(log‘(1 / 𝑋)))))) = (1 / 𝑋)) |
| 22 | 21 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → ((1 /
(abs‘𝑋)) ·
(exp‘(i · (ℑ‘(log‘(1 / 𝑋)))))) = (1 / 𝑋)) |
| 23 | | 0zd 12592 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℤ) |
| 24 | 23 | zconstr 33714 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
Constr) |
| 25 | | 1zzd 12615 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) |
| 26 | 25 | zconstr 33714 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
Constr) |
| 27 | 8 | abscld 15442 |
. . . . . . 7
⊢ (𝜑 → (abs‘𝑋) ∈
ℝ) |
| 28 | 27 | recnd 11255 |
. . . . . . 7
⊢ (𝜑 → (abs‘𝑋) ∈
ℂ) |
| 29 | 7 | subid1d 11575 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 − 0) =
1) |
| 30 | 29, 7 | eqeltrd 2833 |
. . . . . . . . . 10
⊢ (𝜑 → (1 − 0) ∈
ℂ) |
| 31 | 28, 30 | mulcld 11247 |
. . . . . . . . 9
⊢ (𝜑 → ((abs‘𝑋) · (1 − 0)) ∈
ℂ) |
| 32 | 31 | addlidd 11428 |
. . . . . . . 8
⊢ (𝜑 → (0 + ((abs‘𝑋) · (1 − 0))) =
((abs‘𝑋) · (1
− 0))) |
| 33 | 29 | oveq2d 7415 |
. . . . . . . 8
⊢ (𝜑 → ((abs‘𝑋) · (1 − 0)) =
((abs‘𝑋) ·
1)) |
| 34 | 28 | mulridd 11244 |
. . . . . . . 8
⊢ (𝜑 → ((abs‘𝑋) · 1) = (abs‘𝑋)) |
| 35 | 32, 33, 34 | 3eqtrrd 2774 |
. . . . . . 7
⊢ (𝜑 → (abs‘𝑋) = (0 + ((abs‘𝑋) · (1 −
0)))) |
| 36 | 8 | absge0d 15450 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (abs‘𝑋)) |
| 37 | 27, 36 | absidd 15428 |
. . . . . . . 8
⊢ (𝜑 →
(abs‘(abs‘𝑋)) =
(abs‘𝑋)) |
| 38 | 28 | subid1d 11575 |
. . . . . . . . 9
⊢ (𝜑 → ((abs‘𝑋) − 0) = (abs‘𝑋)) |
| 39 | 38 | fveq2d 6876 |
. . . . . . . 8
⊢ (𝜑 →
(abs‘((abs‘𝑋)
− 0)) = (abs‘(abs‘𝑋))) |
| 40 | 8 | subid1d 11575 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 − 0) = 𝑋) |
| 41 | 40 | fveq2d 6876 |
. . . . . . . 8
⊢ (𝜑 → (abs‘(𝑋 − 0)) = (abs‘𝑋)) |
| 42 | 37, 39, 41 | 3eqtr4d 2779 |
. . . . . . 7
⊢ (𝜑 →
(abs‘((abs‘𝑋)
− 0)) = (abs‘(𝑋
− 0))) |
| 43 | 24, 26, 24, 1, 24, 27, 28, 35, 42 | constrlccl 33707 |
. . . . . 6
⊢ (𝜑 → (abs‘𝑋) ∈
Constr) |
| 44 | 8, 3 | absne0d 15453 |
. . . . . 6
⊢ (𝜑 → (abs‘𝑋) ≠ 0) |
| 45 | 43, 44, 27 | constrreinvcl 33722 |
. . . . 5
⊢ (𝜑 → (1 / (abs‘𝑋)) ∈
Constr) |
| 46 | 45 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (1 /
(abs‘𝑋)) ∈
Constr) |
| 47 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → 𝑋 ∈ ℂ) |
| 48 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → 𝑋 ≠ 0) |
| 49 | 8 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ -𝑋 ∈ ℝ+) → 𝑋 ∈
ℂ) |
| 50 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ -𝑋 ∈ ℝ+) → -𝑋 ∈
ℝ+) |
| 51 | 50 | rpred 13043 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ -𝑋 ∈ ℝ+) → -𝑋 ∈
ℝ) |
| 52 | 49, 51 | negrebd 11585 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ -𝑋 ∈ ℝ+) → 𝑋 ∈
ℝ) |
| 53 | 52 | stoic1a 1771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → ¬ -𝑋 ∈
ℝ+) |
| 54 | 47, 48, 53 | arginv 32658 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) →
(ℑ‘(log‘(1 / 𝑋))) = -(ℑ‘(log‘𝑋))) |
| 55 | 47, 48, 53 | argcj 32659 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) →
(ℑ‘(log‘(∗‘𝑋))) = -(ℑ‘(log‘𝑋))) |
| 56 | 54, 55 | eqtr4d 2772 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) →
(ℑ‘(log‘(1 / 𝑋))) =
(ℑ‘(log‘(∗‘𝑋)))) |
| 57 | 56 | oveq2d 7415 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (i ·
(ℑ‘(log‘(1 / 𝑋)))) = (i ·
(ℑ‘(log‘(∗‘𝑋))))) |
| 58 | 57 | fveq2d 6876 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (exp‘(i
· (ℑ‘(log‘(1 / 𝑋))))) = (exp‘(i ·
(ℑ‘(log‘(∗‘𝑋)))))) |
| 59 | 8 | cjcld 15202 |
. . . . . . . 8
⊢ (𝜑 → (∗‘𝑋) ∈
ℂ) |
| 60 | 8, 3 | cjne0d 15209 |
. . . . . . . 8
⊢ (𝜑 → (∗‘𝑋) ≠ 0) |
| 61 | 59, 60 | efiargd 32657 |
. . . . . . 7
⊢ (𝜑 → (exp‘(i ·
(ℑ‘(log‘(∗‘𝑋))))) = ((∗‘𝑋) / (abs‘(∗‘𝑋)))) |
| 62 | 61 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (exp‘(i
· (ℑ‘(log‘(∗‘𝑋))))) = ((∗‘𝑋) / (abs‘(∗‘𝑋)))) |
| 63 | 58, 62 | eqtrd 2769 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (exp‘(i
· (ℑ‘(log‘(1 / 𝑋))))) = ((∗‘𝑋) / (abs‘(∗‘𝑋)))) |
| 64 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → 𝑋 ∈ Constr) |
| 65 | 64 | constrcjcl 33718 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) →
(∗‘𝑋) ∈
Constr) |
| 66 | 60 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) →
(∗‘𝑋) ≠
0) |
| 67 | 65, 66 | constrdircl 33715 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) →
((∗‘𝑋) /
(abs‘(∗‘𝑋))) ∈ Constr) |
| 68 | 63, 67 | eqeltrd 2833 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (exp‘(i
· (ℑ‘(log‘(1 / 𝑋))))) ∈ Constr) |
| 69 | 46, 68 | constrmulcl 33721 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → ((1 /
(abs‘𝑋)) ·
(exp‘(i · (ℑ‘(log‘(1 / 𝑋)))))) ∈ Constr) |
| 70 | 22, 69 | eqeltrrd 2834 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (1 / 𝑋) ∈
Constr) |
| 71 | 6, 70 | pm2.61dan 812 |
1
⊢ (𝜑 → (1 / 𝑋) ∈ Constr) |