| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constraddcl | Structured version Visualization version GIF version | ||
| Description: Constructive numbers are closed under complex addition. Item (1) of Theorem 7.10 of [Stewart] p. 96 (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| constraddcl.1 | ⊢ (𝜑 → 𝑋 ∈ Constr) |
| constraddcl.2 | ⊢ (𝜑 → 𝑌 ∈ Constr) |
| Ref | Expression |
|---|---|
| constraddcl | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 2 | 1 | oveq2d 7369 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 + 𝑋) = (𝑋 + 𝑌)) |
| 3 | 0nn0 12417 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 5 | 4 | nn0constr 33727 | . . . . 5 ⊢ (𝜑 → 0 ∈ Constr) |
| 6 | constraddcl.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Constr) | |
| 7 | 2re 12220 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ) |
| 9 | 6 | constrcn 33726 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 10 | 9, 9 | addcld 11153 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑋) ∈ ℂ) |
| 11 | 2cnd 12224 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 12 | 0cnd 11127 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 13 | 9, 12 | subcld 11493 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 − 0) ∈ ℂ) |
| 14 | 11, 13 | mulcld 11154 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝑋 − 0)) ∈ ℂ) |
| 15 | 14 | addlidd 11335 | . . . . . 6 ⊢ (𝜑 → (0 + (2 · (𝑋 − 0))) = (2 · (𝑋 − 0))) |
| 16 | 9 | subid1d 11482 | . . . . . . 7 ⊢ (𝜑 → (𝑋 − 0) = 𝑋) |
| 17 | 16 | oveq2d 7369 | . . . . . 6 ⊢ (𝜑 → (2 · (𝑋 − 0)) = (2 · 𝑋)) |
| 18 | 9 | 2timesd 12385 | . . . . . 6 ⊢ (𝜑 → (2 · 𝑋) = (𝑋 + 𝑋)) |
| 19 | 15, 17, 18 | 3eqtrrd 2769 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑋) = (0 + (2 · (𝑋 − 0)))) |
| 20 | 9, 9 | pncand 11494 | . . . . . . 7 ⊢ (𝜑 → ((𝑋 + 𝑋) − 𝑋) = 𝑋) |
| 21 | 20, 16 | eqtr4d 2767 | . . . . . 6 ⊢ (𝜑 → ((𝑋 + 𝑋) − 𝑋) = (𝑋 − 0)) |
| 22 | 21 | fveq2d 6830 | . . . . 5 ⊢ (𝜑 → (abs‘((𝑋 + 𝑋) − 𝑋)) = (abs‘(𝑋 − 0))) |
| 23 | 5, 6, 6, 6, 5, 8, 10, 19, 22 | constrlccl 33723 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑋) ∈ Constr) |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 + 𝑋) ∈ Constr) |
| 25 | 2, 24 | eqeltrrd 2829 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 + 𝑌) ∈ Constr) |
| 26 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ Constr) |
| 27 | constraddcl.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ Constr) | |
| 28 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ Constr) |
| 29 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 0 ∈ Constr) |
| 30 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ ℂ) |
| 31 | 27 | constrcn 33726 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ ℂ) |
| 33 | 30, 32 | addcld 11153 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 + 𝑌) ∈ ℂ) |
| 34 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
| 35 | 30, 32 | pncan2d 11495 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑋) = 𝑌) |
| 36 | 32 | subid1d 11482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 − 0) = 𝑌) |
| 37 | 35, 36 | eqtr4d 2767 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑋) = (𝑌 − 0)) |
| 38 | 37 | fveq2d 6830 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (abs‘((𝑋 + 𝑌) − 𝑋)) = (abs‘(𝑌 − 0))) |
| 39 | 30, 32 | pncand 11494 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑌) = 𝑋) |
| 40 | 30 | subid1d 11482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 − 0) = 𝑋) |
| 41 | 39, 40 | eqtr4d 2767 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑌) = (𝑋 − 0)) |
| 42 | 41 | fveq2d 6830 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (abs‘((𝑋 + 𝑌) − 𝑌)) = (abs‘(𝑋 − 0))) |
| 43 | 26, 28, 29, 28, 26, 29, 33, 34, 38, 42 | constrcccl 33724 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 + 𝑌) ∈ Constr) |
| 44 | 25, 43 | pm2.61dane 3012 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 + caddc 11031 · cmul 11033 − cmin 11365 2c2 12201 ℕ0cn0 12402 abscabs 15159 Constrcconstr 33695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-constr 33696 |
| This theorem is referenced by: constrremulcl 33733 constrimcl 33736 constrmulcl 33737 constrreinvcl 33738 constrsdrg 33741 constrresqrtcl 33743 constrsqrtcl 33745 cos9thpinconstr 33757 |
| Copyright terms: Public domain | W3C validator |