| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constraddcl | Structured version Visualization version GIF version | ||
| Description: Constructive numbers are closed under complex addition. Item (1) of Theorem 7.10 of [Stewart] p. 96 (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| constraddcl.1 | ⊢ (𝜑 → 𝑋 ∈ Constr) |
| constraddcl.2 | ⊢ (𝜑 → 𝑌 ∈ Constr) |
| Ref | Expression |
|---|---|
| constraddcl | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 2 | 1 | oveq2d 7410 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 + 𝑋) = (𝑋 + 𝑌)) |
| 3 | 0nn0 12473 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 5 | 4 | nn0constr 33759 | . . . . 5 ⊢ (𝜑 → 0 ∈ Constr) |
| 6 | constraddcl.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Constr) | |
| 7 | 2re 12271 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ) |
| 9 | 6 | constrcn 33758 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 10 | 9, 9 | addcld 11211 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑋) ∈ ℂ) |
| 11 | 2cnd 12275 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 12 | 0cnd 11185 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 13 | 9, 12 | subcld 11551 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 − 0) ∈ ℂ) |
| 14 | 11, 13 | mulcld 11212 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝑋 − 0)) ∈ ℂ) |
| 15 | 14 | addlidd 11393 | . . . . . 6 ⊢ (𝜑 → (0 + (2 · (𝑋 − 0))) = (2 · (𝑋 − 0))) |
| 16 | 9 | subid1d 11540 | . . . . . . 7 ⊢ (𝜑 → (𝑋 − 0) = 𝑋) |
| 17 | 16 | oveq2d 7410 | . . . . . 6 ⊢ (𝜑 → (2 · (𝑋 − 0)) = (2 · 𝑋)) |
| 18 | 9 | 2timesd 12441 | . . . . . 6 ⊢ (𝜑 → (2 · 𝑋) = (𝑋 + 𝑋)) |
| 19 | 15, 17, 18 | 3eqtrrd 2770 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑋) = (0 + (2 · (𝑋 − 0)))) |
| 20 | 9, 9 | pncand 11552 | . . . . . . 7 ⊢ (𝜑 → ((𝑋 + 𝑋) − 𝑋) = 𝑋) |
| 21 | 20, 16 | eqtr4d 2768 | . . . . . 6 ⊢ (𝜑 → ((𝑋 + 𝑋) − 𝑋) = (𝑋 − 0)) |
| 22 | 21 | fveq2d 6869 | . . . . 5 ⊢ (𝜑 → (abs‘((𝑋 + 𝑋) − 𝑋)) = (abs‘(𝑋 − 0))) |
| 23 | 5, 6, 6, 6, 5, 8, 10, 19, 22 | constrlccl 33755 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑋) ∈ Constr) |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 + 𝑋) ∈ Constr) |
| 25 | 2, 24 | eqeltrrd 2830 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 + 𝑌) ∈ Constr) |
| 26 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ Constr) |
| 27 | constraddcl.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ Constr) | |
| 28 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ Constr) |
| 29 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 0 ∈ Constr) |
| 30 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ ℂ) |
| 31 | 27 | constrcn 33758 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ ℂ) |
| 33 | 30, 32 | addcld 11211 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 + 𝑌) ∈ ℂ) |
| 34 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
| 35 | 30, 32 | pncan2d 11553 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑋) = 𝑌) |
| 36 | 32 | subid1d 11540 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 − 0) = 𝑌) |
| 37 | 35, 36 | eqtr4d 2768 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑋) = (𝑌 − 0)) |
| 38 | 37 | fveq2d 6869 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (abs‘((𝑋 + 𝑌) − 𝑋)) = (abs‘(𝑌 − 0))) |
| 39 | 30, 32 | pncand 11552 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑌) = 𝑋) |
| 40 | 30 | subid1d 11540 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 − 0) = 𝑋) |
| 41 | 39, 40 | eqtr4d 2768 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑌) = (𝑋 − 0)) |
| 42 | 41 | fveq2d 6869 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (abs‘((𝑋 + 𝑌) − 𝑌)) = (abs‘(𝑋 − 0))) |
| 43 | 26, 28, 29, 28, 26, 29, 33, 34, 38, 42 | constrcccl 33756 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 + 𝑌) ∈ Constr) |
| 44 | 25, 43 | pm2.61dane 3014 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 (class class class)co 7394 ℂcc 11084 ℝcr 11085 0cc0 11086 + caddc 11089 · cmul 11091 − cmin 11423 2c2 12252 ℕ0cn0 12458 abscabs 15210 Constrcconstr 33727 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-n0 12459 df-z 12546 df-constr 33728 |
| This theorem is referenced by: constrremulcl 33765 constrimcl 33768 constrmulcl 33769 constrreinvcl 33770 constrsdrg 33773 constrresqrtcl 33775 constrsqrtcl 33777 cos9thpinconstr 33789 |
| Copyright terms: Public domain | W3C validator |