| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constraddcl | Structured version Visualization version GIF version | ||
| Description: Constructive numbers are closed under complex addition. Item (1) of Theorem 7.10 of [Stewart] p. 96 (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| constraddcl.1 | ⊢ (𝜑 → 𝑋 ∈ Constr) |
| constraddcl.2 | ⊢ (𝜑 → 𝑌 ∈ Constr) |
| Ref | Expression |
|---|---|
| constraddcl | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 2 | 1 | oveq2d 7362 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 + 𝑋) = (𝑋 + 𝑌)) |
| 3 | 0nn0 12393 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 5 | 4 | nn0constr 33769 | . . . . 5 ⊢ (𝜑 → 0 ∈ Constr) |
| 6 | constraddcl.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Constr) | |
| 7 | 2re 12196 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ) |
| 9 | 6 | constrcn 33768 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 10 | 9, 9 | addcld 11128 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑋) ∈ ℂ) |
| 11 | 2cnd 12200 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 12 | 0cnd 11102 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 13 | 9, 12 | subcld 11469 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 − 0) ∈ ℂ) |
| 14 | 11, 13 | mulcld 11129 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝑋 − 0)) ∈ ℂ) |
| 15 | 14 | addlidd 11311 | . . . . . 6 ⊢ (𝜑 → (0 + (2 · (𝑋 − 0))) = (2 · (𝑋 − 0))) |
| 16 | 9 | subid1d 11458 | . . . . . . 7 ⊢ (𝜑 → (𝑋 − 0) = 𝑋) |
| 17 | 16 | oveq2d 7362 | . . . . . 6 ⊢ (𝜑 → (2 · (𝑋 − 0)) = (2 · 𝑋)) |
| 18 | 9 | 2timesd 12361 | . . . . . 6 ⊢ (𝜑 → (2 · 𝑋) = (𝑋 + 𝑋)) |
| 19 | 15, 17, 18 | 3eqtrrd 2771 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑋) = (0 + (2 · (𝑋 − 0)))) |
| 20 | 9, 9 | pncand 11470 | . . . . . . 7 ⊢ (𝜑 → ((𝑋 + 𝑋) − 𝑋) = 𝑋) |
| 21 | 20, 16 | eqtr4d 2769 | . . . . . 6 ⊢ (𝜑 → ((𝑋 + 𝑋) − 𝑋) = (𝑋 − 0)) |
| 22 | 21 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → (abs‘((𝑋 + 𝑋) − 𝑋)) = (abs‘(𝑋 − 0))) |
| 23 | 5, 6, 6, 6, 5, 8, 10, 19, 22 | constrlccl 33765 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑋) ∈ Constr) |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 + 𝑋) ∈ Constr) |
| 25 | 2, 24 | eqeltrrd 2832 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 + 𝑌) ∈ Constr) |
| 26 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ Constr) |
| 27 | constraddcl.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ Constr) | |
| 28 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ Constr) |
| 29 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 0 ∈ Constr) |
| 30 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ ℂ) |
| 31 | 27 | constrcn 33768 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ ℂ) |
| 33 | 30, 32 | addcld 11128 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 + 𝑌) ∈ ℂ) |
| 34 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
| 35 | 30, 32 | pncan2d 11471 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑋) = 𝑌) |
| 36 | 32 | subid1d 11458 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 − 0) = 𝑌) |
| 37 | 35, 36 | eqtr4d 2769 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑋) = (𝑌 − 0)) |
| 38 | 37 | fveq2d 6826 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (abs‘((𝑋 + 𝑌) − 𝑋)) = (abs‘(𝑌 − 0))) |
| 39 | 30, 32 | pncand 11470 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑌) = 𝑋) |
| 40 | 30 | subid1d 11458 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 − 0) = 𝑋) |
| 41 | 39, 40 | eqtr4d 2769 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑌) = (𝑋 − 0)) |
| 42 | 41 | fveq2d 6826 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (abs‘((𝑋 + 𝑌) − 𝑌)) = (abs‘(𝑋 − 0))) |
| 43 | 26, 28, 29, 28, 26, 29, 33, 34, 38, 42 | constrcccl 33766 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 + 𝑌) ∈ Constr) |
| 44 | 25, 43 | pm2.61dane 3015 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 (class class class)co 7346 ℂcc 11001 ℝcr 11002 0cc0 11003 + caddc 11006 · cmul 11008 − cmin 11341 2c2 12177 ℕ0cn0 12378 abscabs 15138 Constrcconstr 33737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-constr 33738 |
| This theorem is referenced by: constrremulcl 33775 constrimcl 33778 constrmulcl 33779 constrreinvcl 33780 constrsdrg 33783 constrresqrtcl 33785 constrsqrtcl 33787 cos9thpinconstr 33799 |
| Copyright terms: Public domain | W3C validator |