| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constraddcl | Structured version Visualization version GIF version | ||
| Description: Constructive numbers are closed under complex addition. Item (1) of Theorem 7.10 of [Stewart] p. 96 (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| constraddcl.1 | ⊢ (𝜑 → 𝑋 ∈ Constr) |
| constraddcl.2 | ⊢ (𝜑 → 𝑌 ∈ Constr) |
| Ref | Expression |
|---|---|
| constraddcl | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 2 | 1 | oveq2d 7403 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 + 𝑋) = (𝑋 + 𝑌)) |
| 3 | 0nn0 12457 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 5 | 4 | nn0constr 33751 | . . . . 5 ⊢ (𝜑 → 0 ∈ Constr) |
| 6 | constraddcl.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Constr) | |
| 7 | 2re 12260 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ) |
| 9 | 6 | constrcn 33750 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 10 | 9, 9 | addcld 11193 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑋) ∈ ℂ) |
| 11 | 2cnd 12264 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 12 | 0cnd 11167 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 13 | 9, 12 | subcld 11533 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 − 0) ∈ ℂ) |
| 14 | 11, 13 | mulcld 11194 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝑋 − 0)) ∈ ℂ) |
| 15 | 14 | addlidd 11375 | . . . . . 6 ⊢ (𝜑 → (0 + (2 · (𝑋 − 0))) = (2 · (𝑋 − 0))) |
| 16 | 9 | subid1d 11522 | . . . . . . 7 ⊢ (𝜑 → (𝑋 − 0) = 𝑋) |
| 17 | 16 | oveq2d 7403 | . . . . . 6 ⊢ (𝜑 → (2 · (𝑋 − 0)) = (2 · 𝑋)) |
| 18 | 9 | 2timesd 12425 | . . . . . 6 ⊢ (𝜑 → (2 · 𝑋) = (𝑋 + 𝑋)) |
| 19 | 15, 17, 18 | 3eqtrrd 2769 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑋) = (0 + (2 · (𝑋 − 0)))) |
| 20 | 9, 9 | pncand 11534 | . . . . . . 7 ⊢ (𝜑 → ((𝑋 + 𝑋) − 𝑋) = 𝑋) |
| 21 | 20, 16 | eqtr4d 2767 | . . . . . 6 ⊢ (𝜑 → ((𝑋 + 𝑋) − 𝑋) = (𝑋 − 0)) |
| 22 | 21 | fveq2d 6862 | . . . . 5 ⊢ (𝜑 → (abs‘((𝑋 + 𝑋) − 𝑋)) = (abs‘(𝑋 − 0))) |
| 23 | 5, 6, 6, 6, 5, 8, 10, 19, 22 | constrlccl 33747 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑋) ∈ Constr) |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 + 𝑋) ∈ Constr) |
| 25 | 2, 24 | eqeltrrd 2829 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 + 𝑌) ∈ Constr) |
| 26 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ Constr) |
| 27 | constraddcl.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ Constr) | |
| 28 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ Constr) |
| 29 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 0 ∈ Constr) |
| 30 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ ℂ) |
| 31 | 27 | constrcn 33750 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ ℂ) |
| 33 | 30, 32 | addcld 11193 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 + 𝑌) ∈ ℂ) |
| 34 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
| 35 | 30, 32 | pncan2d 11535 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑋) = 𝑌) |
| 36 | 32 | subid1d 11522 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 − 0) = 𝑌) |
| 37 | 35, 36 | eqtr4d 2767 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑋) = (𝑌 − 0)) |
| 38 | 37 | fveq2d 6862 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (abs‘((𝑋 + 𝑌) − 𝑋)) = (abs‘(𝑌 − 0))) |
| 39 | 30, 32 | pncand 11534 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑌) = 𝑋) |
| 40 | 30 | subid1d 11522 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 − 0) = 𝑋) |
| 41 | 39, 40 | eqtr4d 2767 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑌) = (𝑋 − 0)) |
| 42 | 41 | fveq2d 6862 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (abs‘((𝑋 + 𝑌) − 𝑌)) = (abs‘(𝑋 − 0))) |
| 43 | 26, 28, 29, 28, 26, 29, 33, 34, 38, 42 | constrcccl 33748 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 + 𝑌) ∈ Constr) |
| 44 | 25, 43 | pm2.61dane 3012 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 + caddc 11071 · cmul 11073 − cmin 11405 2c2 12241 ℕ0cn0 12442 abscabs 15200 Constrcconstr 33719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-constr 33720 |
| This theorem is referenced by: constrremulcl 33757 constrimcl 33760 constrmulcl 33761 constrreinvcl 33762 constrsdrg 33765 constrresqrtcl 33767 constrsqrtcl 33769 cos9thpinconstr 33781 |
| Copyright terms: Public domain | W3C validator |