Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constraddcl Structured version   Visualization version   GIF version

Theorem constraddcl 33742
Description: Constructive numbers are closed under complex addition. (Contributed by Thierry Arnoux, 2-Nov-2025.)
Hypotheses
Ref Expression
constraddcl.1 (𝜑𝑋 ∈ Constr)
constraddcl.2 (𝜑𝑌 ∈ Constr)
Assertion
Ref Expression
constraddcl (𝜑 → (𝑋 + 𝑌) ∈ Constr)

Proof of Theorem constraddcl
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
21oveq2d 7429 . . 3 ((𝜑𝑋 = 𝑌) → (𝑋 + 𝑋) = (𝑋 + 𝑌))
3 0nn0 12524 . . . . . . 7 0 ∈ ℕ0
43a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
54nn0constr 33741 . . . . 5 (𝜑 → 0 ∈ Constr)
6 constraddcl.1 . . . . 5 (𝜑𝑋 ∈ Constr)
7 2re 12322 . . . . . 6 2 ∈ ℝ
87a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
96constrcn 33740 . . . . . 6 (𝜑𝑋 ∈ ℂ)
109, 9addcld 11262 . . . . 5 (𝜑 → (𝑋 + 𝑋) ∈ ℂ)
11 2cnd 12326 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
12 0cnd 11236 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
139, 12subcld 11602 . . . . . . . 8 (𝜑 → (𝑋 − 0) ∈ ℂ)
1411, 13mulcld 11263 . . . . . . 7 (𝜑 → (2 · (𝑋 − 0)) ∈ ℂ)
1514addlidd 11444 . . . . . 6 (𝜑 → (0 + (2 · (𝑋 − 0))) = (2 · (𝑋 − 0)))
169subid1d 11591 . . . . . . 7 (𝜑 → (𝑋 − 0) = 𝑋)
1716oveq2d 7429 . . . . . 6 (𝜑 → (2 · (𝑋 − 0)) = (2 · 𝑋))
1892timesd 12492 . . . . . 6 (𝜑 → (2 · 𝑋) = (𝑋 + 𝑋))
1915, 17, 183eqtrrd 2774 . . . . 5 (𝜑 → (𝑋 + 𝑋) = (0 + (2 · (𝑋 − 0))))
209, 9pncand 11603 . . . . . . 7 (𝜑 → ((𝑋 + 𝑋) − 𝑋) = 𝑋)
2120, 16eqtr4d 2772 . . . . . 6 (𝜑 → ((𝑋 + 𝑋) − 𝑋) = (𝑋 − 0))
2221fveq2d 6890 . . . . 5 (𝜑 → (abs‘((𝑋 + 𝑋) − 𝑋)) = (abs‘(𝑋 − 0)))
235, 6, 6, 6, 5, 8, 10, 19, 22constrlccl 33737 . . . 4 (𝜑 → (𝑋 + 𝑋) ∈ Constr)
2423adantr 480 . . 3 ((𝜑𝑋 = 𝑌) → (𝑋 + 𝑋) ∈ Constr)
252, 24eqeltrrd 2834 . 2 ((𝜑𝑋 = 𝑌) → (𝑋 + 𝑌) ∈ Constr)
266adantr 480 . . 3 ((𝜑𝑋𝑌) → 𝑋 ∈ Constr)
27 constraddcl.2 . . . 4 (𝜑𝑌 ∈ Constr)
2827adantr 480 . . 3 ((𝜑𝑋𝑌) → 𝑌 ∈ Constr)
295adantr 480 . . 3 ((𝜑𝑋𝑌) → 0 ∈ Constr)
309adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝑋 ∈ ℂ)
3127constrcn 33740 . . . . 5 (𝜑𝑌 ∈ ℂ)
3231adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝑌 ∈ ℂ)
3330, 32addcld 11262 . . 3 ((𝜑𝑋𝑌) → (𝑋 + 𝑌) ∈ ℂ)
34 simpr 484 . . 3 ((𝜑𝑋𝑌) → 𝑋𝑌)
3530, 32pncan2d 11604 . . . . 5 ((𝜑𝑋𝑌) → ((𝑋 + 𝑌) − 𝑋) = 𝑌)
3632subid1d 11591 . . . . 5 ((𝜑𝑋𝑌) → (𝑌 − 0) = 𝑌)
3735, 36eqtr4d 2772 . . . 4 ((𝜑𝑋𝑌) → ((𝑋 + 𝑌) − 𝑋) = (𝑌 − 0))
3837fveq2d 6890 . . 3 ((𝜑𝑋𝑌) → (abs‘((𝑋 + 𝑌) − 𝑋)) = (abs‘(𝑌 − 0)))
3930, 32pncand 11603 . . . . 5 ((𝜑𝑋𝑌) → ((𝑋 + 𝑌) − 𝑌) = 𝑋)
4030subid1d 11591 . . . . 5 ((𝜑𝑋𝑌) → (𝑋 − 0) = 𝑋)
4139, 40eqtr4d 2772 . . . 4 ((𝜑𝑋𝑌) → ((𝑋 + 𝑌) − 𝑌) = (𝑋 − 0))
4241fveq2d 6890 . . 3 ((𝜑𝑋𝑌) → (abs‘((𝑋 + 𝑌) − 𝑌)) = (abs‘(𝑋 − 0)))
4326, 28, 29, 28, 26, 29, 33, 34, 38, 42constrcccl 33738 . 2 ((𝜑𝑋𝑌) → (𝑋 + 𝑌) ∈ Constr)
4425, 43pm2.61dane 3018 1 (𝜑 → (𝑋 + 𝑌) ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137   + caddc 11140   · cmul 11142  cmin 11474  2c2 12303  0cn0 12509  abscabs 15255  Constrcconstr 33709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-n0 12510  df-z 12597  df-constr 33710
This theorem is referenced by:  constrremulcl  33747
  Copyright terms: Public domain W3C validator