| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constraddcl | Structured version Visualization version GIF version | ||
| Description: Constructive numbers are closed under complex addition. Item (1) of Theorem 7.10 of [Stewart] p. 96 (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| constraddcl.1 | ⊢ (𝜑 → 𝑋 ∈ Constr) |
| constraddcl.2 | ⊢ (𝜑 → 𝑌 ∈ Constr) |
| Ref | Expression |
|---|---|
| constraddcl | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 2 | 1 | oveq2d 7368 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 + 𝑋) = (𝑋 + 𝑌)) |
| 3 | 0nn0 12403 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 5 | 4 | nn0constr 33795 | . . . . 5 ⊢ (𝜑 → 0 ∈ Constr) |
| 6 | constraddcl.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Constr) | |
| 7 | 2re 12206 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ) |
| 9 | 6 | constrcn 33794 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 10 | 9, 9 | addcld 11138 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑋) ∈ ℂ) |
| 11 | 2cnd 12210 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 12 | 0cnd 11112 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 13 | 9, 12 | subcld 11479 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 − 0) ∈ ℂ) |
| 14 | 11, 13 | mulcld 11139 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝑋 − 0)) ∈ ℂ) |
| 15 | 14 | addlidd 11321 | . . . . . 6 ⊢ (𝜑 → (0 + (2 · (𝑋 − 0))) = (2 · (𝑋 − 0))) |
| 16 | 9 | subid1d 11468 | . . . . . . 7 ⊢ (𝜑 → (𝑋 − 0) = 𝑋) |
| 17 | 16 | oveq2d 7368 | . . . . . 6 ⊢ (𝜑 → (2 · (𝑋 − 0)) = (2 · 𝑋)) |
| 18 | 9 | 2timesd 12371 | . . . . . 6 ⊢ (𝜑 → (2 · 𝑋) = (𝑋 + 𝑋)) |
| 19 | 15, 17, 18 | 3eqtrrd 2773 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑋) = (0 + (2 · (𝑋 − 0)))) |
| 20 | 9, 9 | pncand 11480 | . . . . . . 7 ⊢ (𝜑 → ((𝑋 + 𝑋) − 𝑋) = 𝑋) |
| 21 | 20, 16 | eqtr4d 2771 | . . . . . 6 ⊢ (𝜑 → ((𝑋 + 𝑋) − 𝑋) = (𝑋 − 0)) |
| 22 | 21 | fveq2d 6832 | . . . . 5 ⊢ (𝜑 → (abs‘((𝑋 + 𝑋) − 𝑋)) = (abs‘(𝑋 − 0))) |
| 23 | 5, 6, 6, 6, 5, 8, 10, 19, 22 | constrlccl 33791 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑋) ∈ Constr) |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 + 𝑋) ∈ Constr) |
| 25 | 2, 24 | eqeltrrd 2834 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 + 𝑌) ∈ Constr) |
| 26 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ Constr) |
| 27 | constraddcl.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ Constr) | |
| 28 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ Constr) |
| 29 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 0 ∈ Constr) |
| 30 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ ℂ) |
| 31 | 27 | constrcn 33794 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ ℂ) |
| 33 | 30, 32 | addcld 11138 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 + 𝑌) ∈ ℂ) |
| 34 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
| 35 | 30, 32 | pncan2d 11481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑋) = 𝑌) |
| 36 | 32 | subid1d 11468 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 − 0) = 𝑌) |
| 37 | 35, 36 | eqtr4d 2771 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑋) = (𝑌 − 0)) |
| 38 | 37 | fveq2d 6832 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (abs‘((𝑋 + 𝑌) − 𝑋)) = (abs‘(𝑌 − 0))) |
| 39 | 30, 32 | pncand 11480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑌) = 𝑋) |
| 40 | 30 | subid1d 11468 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 − 0) = 𝑋) |
| 41 | 39, 40 | eqtr4d 2771 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 + 𝑌) − 𝑌) = (𝑋 − 0)) |
| 42 | 41 | fveq2d 6832 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (abs‘((𝑋 + 𝑌) − 𝑌)) = (abs‘(𝑋 − 0))) |
| 43 | 26, 28, 29, 28, 26, 29, 33, 34, 38, 42 | constrcccl 33792 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 + 𝑌) ∈ Constr) |
| 44 | 25, 43 | pm2.61dane 3016 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 (class class class)co 7352 ℂcc 11011 ℝcr 11012 0cc0 11013 + caddc 11016 · cmul 11018 − cmin 11351 2c2 12187 ℕ0cn0 12388 abscabs 15143 Constrcconstr 33763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-constr 33764 |
| This theorem is referenced by: constrremulcl 33801 constrimcl 33804 constrmulcl 33805 constrreinvcl 33806 constrsdrg 33809 constrresqrtcl 33811 constrsqrtcl 33813 cos9thpinconstr 33825 |
| Copyright terms: Public domain | W3C validator |