Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrdircl Structured version   Visualization version   GIF version

Theorem constrdircl 33731
Description: Constructible numbers are closed under taking the point on the unit circle having the same argument. (Contributed by Thierry Arnoux, 2-Nov-2025.)
Hypotheses
Ref Expression
constrdircl.x (𝜑𝑋 ∈ Constr)
constrdircl.1 (𝜑𝑋 ≠ 0)
Assertion
Ref Expression
constrdircl (𝜑 → (𝑋 / (abs‘𝑋)) ∈ Constr)

Proof of Theorem constrdircl
StepHypRef Expression
1 0nn0 12417 . . . 4 0 ∈ ℕ0
21a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
32nn0constr 33727 . 2 (𝜑 → 0 ∈ Constr)
4 constrdircl.x . 2 (𝜑𝑋 ∈ Constr)
5 1nn0 12418 . . . 4 1 ∈ ℕ0
65a1i 11 . . 3 (𝜑 → 1 ∈ ℕ0)
76nn0constr 33727 . 2 (𝜑 → 1 ∈ Constr)
84constrcn 33726 . . . 4 (𝜑𝑋 ∈ ℂ)
98abscld 15364 . . 3 (𝜑 → (abs‘𝑋) ∈ ℝ)
10 constrdircl.1 . . . 4 (𝜑𝑋 ≠ 0)
118, 10absne0d 15375 . . 3 (𝜑 → (abs‘𝑋) ≠ 0)
129, 11rereccld 11969 . 2 (𝜑 → (1 / (abs‘𝑋)) ∈ ℝ)
139recnd 11162 . . 3 (𝜑 → (abs‘𝑋) ∈ ℂ)
148, 13, 11divcld 11918 . 2 (𝜑 → (𝑋 / (abs‘𝑋)) ∈ ℂ)
158subid1d 11482 . . . 4 (𝜑 → (𝑋 − 0) = 𝑋)
1615oveq2d 7369 . . 3 (𝜑 → ((1 / (abs‘𝑋)) · (𝑋 − 0)) = ((1 / (abs‘𝑋)) · 𝑋))
1712recnd 11162 . . . . 5 (𝜑 → (1 / (abs‘𝑋)) ∈ ℂ)
1815, 8eqeltrd 2828 . . . . 5 (𝜑 → (𝑋 − 0) ∈ ℂ)
1917, 18mulcld 11154 . . . 4 (𝜑 → ((1 / (abs‘𝑋)) · (𝑋 − 0)) ∈ ℂ)
2019addlidd 11335 . . 3 (𝜑 → (0 + ((1 / (abs‘𝑋)) · (𝑋 − 0))) = ((1 / (abs‘𝑋)) · (𝑋 − 0)))
218, 13, 11divrec2d 11922 . . 3 (𝜑 → (𝑋 / (abs‘𝑋)) = ((1 / (abs‘𝑋)) · 𝑋))
2216, 20, 213eqtr4rd 2775 . 2 (𝜑 → (𝑋 / (abs‘𝑋)) = (0 + ((1 / (abs‘𝑋)) · (𝑋 − 0))))
23 1red 11135 . . . 4 (𝜑 → 1 ∈ ℝ)
246nn0ge0d 12466 . . . 4 (𝜑 → 0 ≤ 1)
2523, 24absidd 15348 . . 3 (𝜑 → (abs‘1) = 1)
26 1m0e1 12262 . . . . 5 (1 − 0) = 1
2726a1i 11 . . . 4 (𝜑 → (1 − 0) = 1)
2827fveq2d 6830 . . 3 (𝜑 → (abs‘(1 − 0)) = (abs‘1))
2914subid1d 11482 . . . . 5 (𝜑 → ((𝑋 / (abs‘𝑋)) − 0) = (𝑋 / (abs‘𝑋)))
3029fveq2d 6830 . . . 4 (𝜑 → (abs‘((𝑋 / (abs‘𝑋)) − 0)) = (abs‘(𝑋 / (abs‘𝑋))))
318, 13, 11absdivd 15383 . . . 4 (𝜑 → (abs‘(𝑋 / (abs‘𝑋))) = ((abs‘𝑋) / (abs‘(abs‘𝑋))))
32 absidm 15249 . . . . . . 7 (𝑋 ∈ ℂ → (abs‘(abs‘𝑋)) = (abs‘𝑋))
338, 32syl 17 . . . . . 6 (𝜑 → (abs‘(abs‘𝑋)) = (abs‘𝑋))
3433oveq2d 7369 . . . . 5 (𝜑 → ((abs‘𝑋) / (abs‘(abs‘𝑋))) = ((abs‘𝑋) / (abs‘𝑋)))
3513, 11dividd 11916 . . . . 5 (𝜑 → ((abs‘𝑋) / (abs‘𝑋)) = 1)
3634, 35eqtrd 2764 . . . 4 (𝜑 → ((abs‘𝑋) / (abs‘(abs‘𝑋))) = 1)
3730, 31, 363eqtrd 2768 . . 3 (𝜑 → (abs‘((𝑋 / (abs‘𝑋)) − 0)) = 1)
3825, 28, 373eqtr4rd 2775 . 2 (𝜑 → (abs‘((𝑋 / (abs‘𝑋)) − 0)) = (abs‘(1 − 0)))
393, 4, 3, 7, 3, 12, 14, 22, 38constrlccl 33723 1 (𝜑 → (𝑋 / (abs‘𝑋)) ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365   / cdiv 11795  0cn0 12402  abscabs 15159  Constrcconstr 33695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-constr 33696
This theorem is referenced by:  iconstr  33732  constrinvcl  33739  constrsqrtcl  33745
  Copyright terms: Public domain W3C validator