| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrdircl | Structured version Visualization version GIF version | ||
| Description: Constructible numbers are closed under taking the point on the unit circle having the same argument. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| constrdircl.x | ⊢ (𝜑 → 𝑋 ∈ Constr) |
| constrdircl.1 | ⊢ (𝜑 → 𝑋 ≠ 0) |
| Ref | Expression |
|---|---|
| constrdircl | ⊢ (𝜑 → (𝑋 / (abs‘𝑋)) ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12473 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 3 | 2 | nn0constr 33759 | . 2 ⊢ (𝜑 → 0 ∈ Constr) |
| 4 | constrdircl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ Constr) | |
| 5 | 1nn0 12474 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ ℕ0) |
| 7 | 6 | nn0constr 33759 | . 2 ⊢ (𝜑 → 1 ∈ Constr) |
| 8 | 4 | constrcn 33758 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 9 | 8 | abscld 15412 | . . 3 ⊢ (𝜑 → (abs‘𝑋) ∈ ℝ) |
| 10 | constrdircl.1 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0) | |
| 11 | 8, 10 | absne0d 15423 | . . 3 ⊢ (𝜑 → (abs‘𝑋) ≠ 0) |
| 12 | 9, 11 | rereccld 12025 | . 2 ⊢ (𝜑 → (1 / (abs‘𝑋)) ∈ ℝ) |
| 13 | 9 | recnd 11220 | . . 3 ⊢ (𝜑 → (abs‘𝑋) ∈ ℂ) |
| 14 | 8, 13, 11 | divcld 11974 | . 2 ⊢ (𝜑 → (𝑋 / (abs‘𝑋)) ∈ ℂ) |
| 15 | 8 | subid1d 11540 | . . . 4 ⊢ (𝜑 → (𝑋 − 0) = 𝑋) |
| 16 | 15 | oveq2d 7410 | . . 3 ⊢ (𝜑 → ((1 / (abs‘𝑋)) · (𝑋 − 0)) = ((1 / (abs‘𝑋)) · 𝑋)) |
| 17 | 12 | recnd 11220 | . . . . 5 ⊢ (𝜑 → (1 / (abs‘𝑋)) ∈ ℂ) |
| 18 | 15, 8 | eqeltrd 2829 | . . . . 5 ⊢ (𝜑 → (𝑋 − 0) ∈ ℂ) |
| 19 | 17, 18 | mulcld 11212 | . . . 4 ⊢ (𝜑 → ((1 / (abs‘𝑋)) · (𝑋 − 0)) ∈ ℂ) |
| 20 | 19 | addlidd 11393 | . . 3 ⊢ (𝜑 → (0 + ((1 / (abs‘𝑋)) · (𝑋 − 0))) = ((1 / (abs‘𝑋)) · (𝑋 − 0))) |
| 21 | 8, 13, 11 | divrec2d 11978 | . . 3 ⊢ (𝜑 → (𝑋 / (abs‘𝑋)) = ((1 / (abs‘𝑋)) · 𝑋)) |
| 22 | 16, 20, 21 | 3eqtr4rd 2776 | . 2 ⊢ (𝜑 → (𝑋 / (abs‘𝑋)) = (0 + ((1 / (abs‘𝑋)) · (𝑋 − 0)))) |
| 23 | 1red 11193 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 24 | 6 | nn0ge0d 12522 | . . . 4 ⊢ (𝜑 → 0 ≤ 1) |
| 25 | 23, 24 | absidd 15398 | . . 3 ⊢ (𝜑 → (abs‘1) = 1) |
| 26 | 1m0e1 12318 | . . . . 5 ⊢ (1 − 0) = 1 | |
| 27 | 26 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 − 0) = 1) |
| 28 | 27 | fveq2d 6869 | . . 3 ⊢ (𝜑 → (abs‘(1 − 0)) = (abs‘1)) |
| 29 | 14 | subid1d 11540 | . . . . 5 ⊢ (𝜑 → ((𝑋 / (abs‘𝑋)) − 0) = (𝑋 / (abs‘𝑋))) |
| 30 | 29 | fveq2d 6869 | . . . 4 ⊢ (𝜑 → (abs‘((𝑋 / (abs‘𝑋)) − 0)) = (abs‘(𝑋 / (abs‘𝑋)))) |
| 31 | 8, 13, 11 | absdivd 15431 | . . . 4 ⊢ (𝜑 → (abs‘(𝑋 / (abs‘𝑋))) = ((abs‘𝑋) / (abs‘(abs‘𝑋)))) |
| 32 | absidm 15299 | . . . . . . 7 ⊢ (𝑋 ∈ ℂ → (abs‘(abs‘𝑋)) = (abs‘𝑋)) | |
| 33 | 8, 32 | syl 17 | . . . . . 6 ⊢ (𝜑 → (abs‘(abs‘𝑋)) = (abs‘𝑋)) |
| 34 | 33 | oveq2d 7410 | . . . . 5 ⊢ (𝜑 → ((abs‘𝑋) / (abs‘(abs‘𝑋))) = ((abs‘𝑋) / (abs‘𝑋))) |
| 35 | 13, 11 | dividd 11972 | . . . . 5 ⊢ (𝜑 → ((abs‘𝑋) / (abs‘𝑋)) = 1) |
| 36 | 34, 35 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → ((abs‘𝑋) / (abs‘(abs‘𝑋))) = 1) |
| 37 | 30, 31, 36 | 3eqtrd 2769 | . . 3 ⊢ (𝜑 → (abs‘((𝑋 / (abs‘𝑋)) − 0)) = 1) |
| 38 | 25, 28, 37 | 3eqtr4rd 2776 | . 2 ⊢ (𝜑 → (abs‘((𝑋 / (abs‘𝑋)) − 0)) = (abs‘(1 − 0))) |
| 39 | 3, 4, 3, 7, 3, 12, 14, 22, 38 | constrlccl 33755 | 1 ⊢ (𝜑 → (𝑋 / (abs‘𝑋)) ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ‘cfv 6519 (class class class)co 7394 ℂcc 11084 0cc0 11086 1c1 11087 + caddc 11089 · cmul 11091 − cmin 11423 / cdiv 11851 ℕ0cn0 12458 abscabs 15210 Constrcconstr 33727 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-sup 9411 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-z 12546 df-uz 12810 df-rp 12966 df-seq 13977 df-exp 14037 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-constr 33728 |
| This theorem is referenced by: iconstr 33764 constrinvcl 33771 constrsqrtcl 33777 |
| Copyright terms: Public domain | W3C validator |