Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrdircl Structured version   Visualization version   GIF version

Theorem constrdircl 33799
Description: Constructible numbers are closed under taking the point on the unit circle having the same argument. (Contributed by Thierry Arnoux, 2-Nov-2025.)
Hypotheses
Ref Expression
constrdircl.x (𝜑𝑋 ∈ Constr)
constrdircl.1 (𝜑𝑋 ≠ 0)
Assertion
Ref Expression
constrdircl (𝜑 → (𝑋 / (abs‘𝑋)) ∈ Constr)

Proof of Theorem constrdircl
StepHypRef Expression
1 0nn0 12403 . . . 4 0 ∈ ℕ0
21a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
32nn0constr 33795 . 2 (𝜑 → 0 ∈ Constr)
4 constrdircl.x . 2 (𝜑𝑋 ∈ Constr)
5 1nn0 12404 . . . 4 1 ∈ ℕ0
65a1i 11 . . 3 (𝜑 → 1 ∈ ℕ0)
76nn0constr 33795 . 2 (𝜑 → 1 ∈ Constr)
84constrcn 33794 . . . 4 (𝜑𝑋 ∈ ℂ)
98abscld 15348 . . 3 (𝜑 → (abs‘𝑋) ∈ ℝ)
10 constrdircl.1 . . . 4 (𝜑𝑋 ≠ 0)
118, 10absne0d 15359 . . 3 (𝜑 → (abs‘𝑋) ≠ 0)
129, 11rereccld 11955 . 2 (𝜑 → (1 / (abs‘𝑋)) ∈ ℝ)
139recnd 11147 . . 3 (𝜑 → (abs‘𝑋) ∈ ℂ)
148, 13, 11divcld 11904 . 2 (𝜑 → (𝑋 / (abs‘𝑋)) ∈ ℂ)
158subid1d 11468 . . . 4 (𝜑 → (𝑋 − 0) = 𝑋)
1615oveq2d 7368 . . 3 (𝜑 → ((1 / (abs‘𝑋)) · (𝑋 − 0)) = ((1 / (abs‘𝑋)) · 𝑋))
1712recnd 11147 . . . . 5 (𝜑 → (1 / (abs‘𝑋)) ∈ ℂ)
1815, 8eqeltrd 2833 . . . . 5 (𝜑 → (𝑋 − 0) ∈ ℂ)
1917, 18mulcld 11139 . . . 4 (𝜑 → ((1 / (abs‘𝑋)) · (𝑋 − 0)) ∈ ℂ)
2019addlidd 11321 . . 3 (𝜑 → (0 + ((1 / (abs‘𝑋)) · (𝑋 − 0))) = ((1 / (abs‘𝑋)) · (𝑋 − 0)))
218, 13, 11divrec2d 11908 . . 3 (𝜑 → (𝑋 / (abs‘𝑋)) = ((1 / (abs‘𝑋)) · 𝑋))
2216, 20, 213eqtr4rd 2779 . 2 (𝜑 → (𝑋 / (abs‘𝑋)) = (0 + ((1 / (abs‘𝑋)) · (𝑋 − 0))))
23 1red 11120 . . . 4 (𝜑 → 1 ∈ ℝ)
246nn0ge0d 12452 . . . 4 (𝜑 → 0 ≤ 1)
2523, 24absidd 15332 . . 3 (𝜑 → (abs‘1) = 1)
26 1m0e1 12248 . . . . 5 (1 − 0) = 1
2726a1i 11 . . . 4 (𝜑 → (1 − 0) = 1)
2827fveq2d 6832 . . 3 (𝜑 → (abs‘(1 − 0)) = (abs‘1))
2914subid1d 11468 . . . . 5 (𝜑 → ((𝑋 / (abs‘𝑋)) − 0) = (𝑋 / (abs‘𝑋)))
3029fveq2d 6832 . . . 4 (𝜑 → (abs‘((𝑋 / (abs‘𝑋)) − 0)) = (abs‘(𝑋 / (abs‘𝑋))))
318, 13, 11absdivd 15367 . . . 4 (𝜑 → (abs‘(𝑋 / (abs‘𝑋))) = ((abs‘𝑋) / (abs‘(abs‘𝑋))))
32 absidm 15233 . . . . . . 7 (𝑋 ∈ ℂ → (abs‘(abs‘𝑋)) = (abs‘𝑋))
338, 32syl 17 . . . . . 6 (𝜑 → (abs‘(abs‘𝑋)) = (abs‘𝑋))
3433oveq2d 7368 . . . . 5 (𝜑 → ((abs‘𝑋) / (abs‘(abs‘𝑋))) = ((abs‘𝑋) / (abs‘𝑋)))
3513, 11dividd 11902 . . . . 5 (𝜑 → ((abs‘𝑋) / (abs‘𝑋)) = 1)
3634, 35eqtrd 2768 . . . 4 (𝜑 → ((abs‘𝑋) / (abs‘(abs‘𝑋))) = 1)
3730, 31, 363eqtrd 2772 . . 3 (𝜑 → (abs‘((𝑋 / (abs‘𝑋)) − 0)) = 1)
3825, 28, 373eqtr4rd 2779 . 2 (𝜑 → (abs‘((𝑋 / (abs‘𝑋)) − 0)) = (abs‘(1 − 0)))
393, 4, 3, 7, 3, 12, 14, 22, 38constrlccl 33791 1 (𝜑 → (𝑋 / (abs‘𝑋)) ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wne 2929  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  cmin 11351   / cdiv 11781  0cn0 12388  abscabs 15143  Constrcconstr 33763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-constr 33764
This theorem is referenced by:  iconstr  33800  constrinvcl  33807  constrsqrtcl  33813
  Copyright terms: Public domain W3C validator