| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrdircl | Structured version Visualization version GIF version | ||
| Description: Constructible numbers are closed under taking the point on the unit circle having the same argument. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| constrdircl.x | ⊢ (𝜑 → 𝑋 ∈ Constr) |
| constrdircl.1 | ⊢ (𝜑 → 𝑋 ≠ 0) |
| Ref | Expression |
|---|---|
| constrdircl | ⊢ (𝜑 → (𝑋 / (abs‘𝑋)) ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12524 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 3 | 2 | nn0constr 33741 | . 2 ⊢ (𝜑 → 0 ∈ Constr) |
| 4 | constrdircl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ Constr) | |
| 5 | 1nn0 12525 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ ℕ0) |
| 7 | 6 | nn0constr 33741 | . 2 ⊢ (𝜑 → 1 ∈ Constr) |
| 8 | 4 | constrcn 33740 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 9 | 8 | abscld 15457 | . . 3 ⊢ (𝜑 → (abs‘𝑋) ∈ ℝ) |
| 10 | constrdircl.1 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0) | |
| 11 | 8, 10 | absne0d 15468 | . . 3 ⊢ (𝜑 → (abs‘𝑋) ≠ 0) |
| 12 | 9, 11 | rereccld 12076 | . 2 ⊢ (𝜑 → (1 / (abs‘𝑋)) ∈ ℝ) |
| 13 | 9 | recnd 11271 | . . 3 ⊢ (𝜑 → (abs‘𝑋) ∈ ℂ) |
| 14 | 8, 13, 11 | divcld 12025 | . 2 ⊢ (𝜑 → (𝑋 / (abs‘𝑋)) ∈ ℂ) |
| 15 | 8 | subid1d 11591 | . . . 4 ⊢ (𝜑 → (𝑋 − 0) = 𝑋) |
| 16 | 15 | oveq2d 7429 | . . 3 ⊢ (𝜑 → ((1 / (abs‘𝑋)) · (𝑋 − 0)) = ((1 / (abs‘𝑋)) · 𝑋)) |
| 17 | 12 | recnd 11271 | . . . . 5 ⊢ (𝜑 → (1 / (abs‘𝑋)) ∈ ℂ) |
| 18 | 15, 8 | eqeltrd 2833 | . . . . 5 ⊢ (𝜑 → (𝑋 − 0) ∈ ℂ) |
| 19 | 17, 18 | mulcld 11263 | . . . 4 ⊢ (𝜑 → ((1 / (abs‘𝑋)) · (𝑋 − 0)) ∈ ℂ) |
| 20 | 19 | addlidd 11444 | . . 3 ⊢ (𝜑 → (0 + ((1 / (abs‘𝑋)) · (𝑋 − 0))) = ((1 / (abs‘𝑋)) · (𝑋 − 0))) |
| 21 | 8, 13, 11 | divrec2d 12029 | . . 3 ⊢ (𝜑 → (𝑋 / (abs‘𝑋)) = ((1 / (abs‘𝑋)) · 𝑋)) |
| 22 | 16, 20, 21 | 3eqtr4rd 2780 | . 2 ⊢ (𝜑 → (𝑋 / (abs‘𝑋)) = (0 + ((1 / (abs‘𝑋)) · (𝑋 − 0)))) |
| 23 | 1red 11244 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 24 | 6 | nn0ge0d 12573 | . . . 4 ⊢ (𝜑 → 0 ≤ 1) |
| 25 | 23, 24 | absidd 15443 | . . 3 ⊢ (𝜑 → (abs‘1) = 1) |
| 26 | 1m0e1 12369 | . . . . 5 ⊢ (1 − 0) = 1 | |
| 27 | 26 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 − 0) = 1) |
| 28 | 27 | fveq2d 6890 | . . 3 ⊢ (𝜑 → (abs‘(1 − 0)) = (abs‘1)) |
| 29 | 14 | subid1d 11591 | . . . . 5 ⊢ (𝜑 → ((𝑋 / (abs‘𝑋)) − 0) = (𝑋 / (abs‘𝑋))) |
| 30 | 29 | fveq2d 6890 | . . . 4 ⊢ (𝜑 → (abs‘((𝑋 / (abs‘𝑋)) − 0)) = (abs‘(𝑋 / (abs‘𝑋)))) |
| 31 | 8, 13, 11 | absdivd 15476 | . . . 4 ⊢ (𝜑 → (abs‘(𝑋 / (abs‘𝑋))) = ((abs‘𝑋) / (abs‘(abs‘𝑋)))) |
| 32 | absidm 15344 | . . . . . . 7 ⊢ (𝑋 ∈ ℂ → (abs‘(abs‘𝑋)) = (abs‘𝑋)) | |
| 33 | 8, 32 | syl 17 | . . . . . 6 ⊢ (𝜑 → (abs‘(abs‘𝑋)) = (abs‘𝑋)) |
| 34 | 33 | oveq2d 7429 | . . . . 5 ⊢ (𝜑 → ((abs‘𝑋) / (abs‘(abs‘𝑋))) = ((abs‘𝑋) / (abs‘𝑋))) |
| 35 | 13, 11 | dividd 12023 | . . . . 5 ⊢ (𝜑 → ((abs‘𝑋) / (abs‘𝑋)) = 1) |
| 36 | 34, 35 | eqtrd 2769 | . . . 4 ⊢ (𝜑 → ((abs‘𝑋) / (abs‘(abs‘𝑋))) = 1) |
| 37 | 30, 31, 36 | 3eqtrd 2773 | . . 3 ⊢ (𝜑 → (abs‘((𝑋 / (abs‘𝑋)) − 0)) = 1) |
| 38 | 25, 28, 37 | 3eqtr4rd 2780 | . 2 ⊢ (𝜑 → (abs‘((𝑋 / (abs‘𝑋)) − 0)) = (abs‘(1 − 0))) |
| 39 | 3, 4, 3, 7, 3, 12, 14, 22, 38 | constrlccl 33737 | 1 ⊢ (𝜑 → (𝑋 / (abs‘𝑋)) ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 0cc0 11137 1c1 11138 + caddc 11140 · cmul 11142 − cmin 11474 / cdiv 11902 ℕ0cn0 12509 abscabs 15255 Constrcconstr 33709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-seq 14025 df-exp 14085 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-constr 33710 |
| This theorem is referenced by: iconstr 33746 |
| Copyright terms: Public domain | W3C validator |