| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrimcl | Structured version Visualization version GIF version | ||
| Description: Constructible numbers are closed under taking the imaginary part. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| constrcjcl.1 | ⊢ (𝜑 → 𝑋 ∈ Constr) |
| Ref | Expression |
|---|---|
| constrimcl | ⊢ (𝜑 → (ℑ‘𝑋) ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 12502 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 2 | 1 | zconstr 33750 | . 2 ⊢ (𝜑 → 0 ∈ Constr) |
| 3 | 1zzd 12525 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 4 | 3 | zconstr 33750 | . 2 ⊢ (𝜑 → 1 ∈ Constr) |
| 5 | constrcjcl.1 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ Constr) | |
| 6 | 5 | constrcn 33746 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 7 | 6 | recld 15120 | . . . . 5 ⊢ (𝜑 → (ℜ‘𝑋) ∈ ℝ) |
| 8 | 7 | recnd 11162 | . . . 4 ⊢ (𝜑 → (ℜ‘𝑋) ∈ ℂ) |
| 9 | ax-icn 11087 | . . . . . 6 ⊢ i ∈ ℂ | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → i ∈ ℂ) |
| 11 | 6 | imcld 15121 | . . . . . 6 ⊢ (𝜑 → (ℑ‘𝑋) ∈ ℝ) |
| 12 | 11 | recnd 11162 | . . . . 5 ⊢ (𝜑 → (ℑ‘𝑋) ∈ ℂ) |
| 13 | 10, 12 | mulcld 11154 | . . . 4 ⊢ (𝜑 → (i · (ℑ‘𝑋)) ∈ ℂ) |
| 14 | 6 | replimd 15123 | . . . 4 ⊢ (𝜑 → 𝑋 = ((ℜ‘𝑋) + (i · (ℑ‘𝑋)))) |
| 15 | 8, 13, 14 | mvrladdd 11552 | . . 3 ⊢ (𝜑 → (𝑋 − (ℜ‘𝑋)) = (i · (ℑ‘𝑋))) |
| 16 | 6, 8 | negsubd 11500 | . . . 4 ⊢ (𝜑 → (𝑋 + -(ℜ‘𝑋)) = (𝑋 − (ℜ‘𝑋))) |
| 17 | 5 | constrrecl 33755 | . . . . . 6 ⊢ (𝜑 → (ℜ‘𝑋) ∈ Constr) |
| 18 | 17 | constrnegcl 33749 | . . . . 5 ⊢ (𝜑 → -(ℜ‘𝑋) ∈ Constr) |
| 19 | 5, 18 | constraddcl 33748 | . . . 4 ⊢ (𝜑 → (𝑋 + -(ℜ‘𝑋)) ∈ Constr) |
| 20 | 16, 19 | eqeltrrd 2829 | . . 3 ⊢ (𝜑 → (𝑋 − (ℜ‘𝑋)) ∈ Constr) |
| 21 | 15, 20 | eqeltrrd 2829 | . 2 ⊢ (𝜑 → (i · (ℑ‘𝑋)) ∈ Constr) |
| 22 | 1m0e1 12263 | . . . . . 6 ⊢ (1 − 0) = 1 | |
| 23 | 1cnd 11129 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 24 | 22, 23 | eqeltrid 2832 | . . . . 5 ⊢ (𝜑 → (1 − 0) ∈ ℂ) |
| 25 | 12, 24 | mulcld 11154 | . . . 4 ⊢ (𝜑 → ((ℑ‘𝑋) · (1 − 0)) ∈ ℂ) |
| 26 | 25 | addlidd 11336 | . . 3 ⊢ (𝜑 → (0 + ((ℑ‘𝑋) · (1 − 0))) = ((ℑ‘𝑋) · (1 − 0))) |
| 27 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 − 0) = 1) |
| 28 | 27 | oveq2d 7369 | . . 3 ⊢ (𝜑 → ((ℑ‘𝑋) · (1 − 0)) = ((ℑ‘𝑋) · 1)) |
| 29 | 12 | mulridd 11151 | . . 3 ⊢ (𝜑 → ((ℑ‘𝑋) · 1) = (ℑ‘𝑋)) |
| 30 | 26, 28, 29 | 3eqtrrd 2769 | . 2 ⊢ (𝜑 → (ℑ‘𝑋) = (0 + ((ℑ‘𝑋) · (1 − 0)))) |
| 31 | 10, 12 | absmuld 15383 | . . . 4 ⊢ (𝜑 → (abs‘(i · (ℑ‘𝑋))) = ((abs‘i) · (abs‘(ℑ‘𝑋)))) |
| 32 | absi 15212 | . . . . . 6 ⊢ (abs‘i) = 1 | |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → (abs‘i) = 1) |
| 34 | 33 | oveq1d 7368 | . . . 4 ⊢ (𝜑 → ((abs‘i) · (abs‘(ℑ‘𝑋))) = (1 · (abs‘(ℑ‘𝑋)))) |
| 35 | 12 | abscld 15365 | . . . . . 6 ⊢ (𝜑 → (abs‘(ℑ‘𝑋)) ∈ ℝ) |
| 36 | 35 | recnd 11162 | . . . . 5 ⊢ (𝜑 → (abs‘(ℑ‘𝑋)) ∈ ℂ) |
| 37 | 36 | mullidd 11152 | . . . 4 ⊢ (𝜑 → (1 · (abs‘(ℑ‘𝑋))) = (abs‘(ℑ‘𝑋))) |
| 38 | 31, 34, 37 | 3eqtrd 2768 | . . 3 ⊢ (𝜑 → (abs‘(i · (ℑ‘𝑋))) = (abs‘(ℑ‘𝑋))) |
| 39 | 13 | subid1d 11483 | . . . 4 ⊢ (𝜑 → ((i · (ℑ‘𝑋)) − 0) = (i · (ℑ‘𝑋))) |
| 40 | 39 | fveq2d 6830 | . . 3 ⊢ (𝜑 → (abs‘((i · (ℑ‘𝑋)) − 0)) = (abs‘(i · (ℑ‘𝑋)))) |
| 41 | 12 | subid1d 11483 | . . . 4 ⊢ (𝜑 → ((ℑ‘𝑋) − 0) = (ℑ‘𝑋)) |
| 42 | 41 | fveq2d 6830 | . . 3 ⊢ (𝜑 → (abs‘((ℑ‘𝑋) − 0)) = (abs‘(ℑ‘𝑋))) |
| 43 | 38, 40, 42 | 3eqtr4rd 2775 | . 2 ⊢ (𝜑 → (abs‘((ℑ‘𝑋) − 0)) = (abs‘((i · (ℑ‘𝑋)) − 0))) |
| 44 | 2, 4, 2, 21, 2, 11, 12, 30, 43 | constrlccl 33743 | 1 ⊢ (𝜑 → (ℑ‘𝑋) ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 ici 11030 + caddc 11031 · cmul 11033 − cmin 11366 -cneg 11367 ℜcre 15023 ℑcim 15024 abscabs 15160 Constrcconstr 33715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-n0 12404 df-z 12491 df-uz 12755 df-rp 12913 df-seq 13928 df-exp 13988 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-constr 33716 |
| This theorem is referenced by: constrmulcl 33757 |
| Copyright terms: Public domain | W3C validator |