| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrimcl | Structured version Visualization version GIF version | ||
| Description: Constructible numbers are closed under taking the imaginary part. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| constrcjcl.1 | ⊢ (𝜑 → 𝑋 ∈ Constr) |
| Ref | Expression |
|---|---|
| constrimcl | ⊢ (𝜑 → (ℑ‘𝑋) ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 12517 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 2 | 1 | zconstr 33727 | . 2 ⊢ (𝜑 → 0 ∈ Constr) |
| 3 | 1zzd 12540 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 4 | 3 | zconstr 33727 | . 2 ⊢ (𝜑 → 1 ∈ Constr) |
| 5 | constrcjcl.1 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ Constr) | |
| 6 | 5 | constrcn 33723 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 7 | 6 | recld 15136 | . . . . 5 ⊢ (𝜑 → (ℜ‘𝑋) ∈ ℝ) |
| 8 | 7 | recnd 11178 | . . . 4 ⊢ (𝜑 → (ℜ‘𝑋) ∈ ℂ) |
| 9 | ax-icn 11103 | . . . . . 6 ⊢ i ∈ ℂ | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → i ∈ ℂ) |
| 11 | 6 | imcld 15137 | . . . . . 6 ⊢ (𝜑 → (ℑ‘𝑋) ∈ ℝ) |
| 12 | 11 | recnd 11178 | . . . . 5 ⊢ (𝜑 → (ℑ‘𝑋) ∈ ℂ) |
| 13 | 10, 12 | mulcld 11170 | . . . 4 ⊢ (𝜑 → (i · (ℑ‘𝑋)) ∈ ℂ) |
| 14 | 6 | replimd 15139 | . . . 4 ⊢ (𝜑 → 𝑋 = ((ℜ‘𝑋) + (i · (ℑ‘𝑋)))) |
| 15 | 8, 13, 14 | mvrladdd 11567 | . . 3 ⊢ (𝜑 → (𝑋 − (ℜ‘𝑋)) = (i · (ℑ‘𝑋))) |
| 16 | 6, 8 | negsubd 11515 | . . . 4 ⊢ (𝜑 → (𝑋 + -(ℜ‘𝑋)) = (𝑋 − (ℜ‘𝑋))) |
| 17 | 5 | constrrecl 33732 | . . . . . 6 ⊢ (𝜑 → (ℜ‘𝑋) ∈ Constr) |
| 18 | 17 | constrnegcl 33726 | . . . . 5 ⊢ (𝜑 → -(ℜ‘𝑋) ∈ Constr) |
| 19 | 5, 18 | constraddcl 33725 | . . . 4 ⊢ (𝜑 → (𝑋 + -(ℜ‘𝑋)) ∈ Constr) |
| 20 | 16, 19 | eqeltrrd 2829 | . . 3 ⊢ (𝜑 → (𝑋 − (ℜ‘𝑋)) ∈ Constr) |
| 21 | 15, 20 | eqeltrrd 2829 | . 2 ⊢ (𝜑 → (i · (ℑ‘𝑋)) ∈ Constr) |
| 22 | 1m0e1 12278 | . . . . . 6 ⊢ (1 − 0) = 1 | |
| 23 | 1cnd 11145 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 24 | 22, 23 | eqeltrid 2832 | . . . . 5 ⊢ (𝜑 → (1 − 0) ∈ ℂ) |
| 25 | 12, 24 | mulcld 11170 | . . . 4 ⊢ (𝜑 → ((ℑ‘𝑋) · (1 − 0)) ∈ ℂ) |
| 26 | 25 | addlidd 11351 | . . 3 ⊢ (𝜑 → (0 + ((ℑ‘𝑋) · (1 − 0))) = ((ℑ‘𝑋) · (1 − 0))) |
| 27 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 − 0) = 1) |
| 28 | 27 | oveq2d 7385 | . . 3 ⊢ (𝜑 → ((ℑ‘𝑋) · (1 − 0)) = ((ℑ‘𝑋) · 1)) |
| 29 | 12 | mulridd 11167 | . . 3 ⊢ (𝜑 → ((ℑ‘𝑋) · 1) = (ℑ‘𝑋)) |
| 30 | 26, 28, 29 | 3eqtrrd 2769 | . 2 ⊢ (𝜑 → (ℑ‘𝑋) = (0 + ((ℑ‘𝑋) · (1 − 0)))) |
| 31 | 10, 12 | absmuld 15399 | . . . 4 ⊢ (𝜑 → (abs‘(i · (ℑ‘𝑋))) = ((abs‘i) · (abs‘(ℑ‘𝑋)))) |
| 32 | absi 15228 | . . . . . 6 ⊢ (abs‘i) = 1 | |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → (abs‘i) = 1) |
| 34 | 33 | oveq1d 7384 | . . . 4 ⊢ (𝜑 → ((abs‘i) · (abs‘(ℑ‘𝑋))) = (1 · (abs‘(ℑ‘𝑋)))) |
| 35 | 12 | abscld 15381 | . . . . . 6 ⊢ (𝜑 → (abs‘(ℑ‘𝑋)) ∈ ℝ) |
| 36 | 35 | recnd 11178 | . . . . 5 ⊢ (𝜑 → (abs‘(ℑ‘𝑋)) ∈ ℂ) |
| 37 | 36 | mullidd 11168 | . . . 4 ⊢ (𝜑 → (1 · (abs‘(ℑ‘𝑋))) = (abs‘(ℑ‘𝑋))) |
| 38 | 31, 34, 37 | 3eqtrd 2768 | . . 3 ⊢ (𝜑 → (abs‘(i · (ℑ‘𝑋))) = (abs‘(ℑ‘𝑋))) |
| 39 | 13 | subid1d 11498 | . . . 4 ⊢ (𝜑 → ((i · (ℑ‘𝑋)) − 0) = (i · (ℑ‘𝑋))) |
| 40 | 39 | fveq2d 6844 | . . 3 ⊢ (𝜑 → (abs‘((i · (ℑ‘𝑋)) − 0)) = (abs‘(i · (ℑ‘𝑋)))) |
| 41 | 12 | subid1d 11498 | . . . 4 ⊢ (𝜑 → ((ℑ‘𝑋) − 0) = (ℑ‘𝑋)) |
| 42 | 41 | fveq2d 6844 | . . 3 ⊢ (𝜑 → (abs‘((ℑ‘𝑋) − 0)) = (abs‘(ℑ‘𝑋))) |
| 43 | 38, 40, 42 | 3eqtr4rd 2775 | . 2 ⊢ (𝜑 → (abs‘((ℑ‘𝑋) − 0)) = (abs‘((i · (ℑ‘𝑋)) − 0))) |
| 44 | 2, 4, 2, 21, 2, 11, 12, 30, 43 | constrlccl 33720 | 1 ⊢ (𝜑 → (ℑ‘𝑋) ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 ici 11046 + caddc 11047 · cmul 11049 − cmin 11381 -cneg 11382 ℜcre 15039 ℑcim 15040 abscabs 15176 Constrcconstr 33692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-constr 33693 |
| This theorem is referenced by: constrmulcl 33734 |
| Copyright terms: Public domain | W3C validator |