| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrimcl | Structured version Visualization version GIF version | ||
| Description: Constructible numbers are closed under taking the imaginary part. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| constrcjcl.1 | ⊢ (𝜑 → 𝑋 ∈ Constr) |
| Ref | Expression |
|---|---|
| constrimcl | ⊢ (𝜑 → (ℑ‘𝑋) ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 12547 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 2 | 1 | zconstr 33760 | . 2 ⊢ (𝜑 → 0 ∈ Constr) |
| 3 | 1zzd 12570 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 4 | 3 | zconstr 33760 | . 2 ⊢ (𝜑 → 1 ∈ Constr) |
| 5 | constrcjcl.1 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ Constr) | |
| 6 | 5 | constrcn 33756 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 7 | 6 | recld 15166 | . . . . 5 ⊢ (𝜑 → (ℜ‘𝑋) ∈ ℝ) |
| 8 | 7 | recnd 11208 | . . . 4 ⊢ (𝜑 → (ℜ‘𝑋) ∈ ℂ) |
| 9 | ax-icn 11133 | . . . . . 6 ⊢ i ∈ ℂ | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → i ∈ ℂ) |
| 11 | 6 | imcld 15167 | . . . . . 6 ⊢ (𝜑 → (ℑ‘𝑋) ∈ ℝ) |
| 12 | 11 | recnd 11208 | . . . . 5 ⊢ (𝜑 → (ℑ‘𝑋) ∈ ℂ) |
| 13 | 10, 12 | mulcld 11200 | . . . 4 ⊢ (𝜑 → (i · (ℑ‘𝑋)) ∈ ℂ) |
| 14 | 6 | replimd 15169 | . . . 4 ⊢ (𝜑 → 𝑋 = ((ℜ‘𝑋) + (i · (ℑ‘𝑋)))) |
| 15 | 8, 13, 14 | mvrladdd 11597 | . . 3 ⊢ (𝜑 → (𝑋 − (ℜ‘𝑋)) = (i · (ℑ‘𝑋))) |
| 16 | 6, 8 | negsubd 11545 | . . . 4 ⊢ (𝜑 → (𝑋 + -(ℜ‘𝑋)) = (𝑋 − (ℜ‘𝑋))) |
| 17 | 5 | constrrecl 33765 | . . . . . 6 ⊢ (𝜑 → (ℜ‘𝑋) ∈ Constr) |
| 18 | 17 | constrnegcl 33759 | . . . . 5 ⊢ (𝜑 → -(ℜ‘𝑋) ∈ Constr) |
| 19 | 5, 18 | constraddcl 33758 | . . . 4 ⊢ (𝜑 → (𝑋 + -(ℜ‘𝑋)) ∈ Constr) |
| 20 | 16, 19 | eqeltrrd 2830 | . . 3 ⊢ (𝜑 → (𝑋 − (ℜ‘𝑋)) ∈ Constr) |
| 21 | 15, 20 | eqeltrrd 2830 | . 2 ⊢ (𝜑 → (i · (ℑ‘𝑋)) ∈ Constr) |
| 22 | 1m0e1 12308 | . . . . . 6 ⊢ (1 − 0) = 1 | |
| 23 | 1cnd 11175 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 24 | 22, 23 | eqeltrid 2833 | . . . . 5 ⊢ (𝜑 → (1 − 0) ∈ ℂ) |
| 25 | 12, 24 | mulcld 11200 | . . . 4 ⊢ (𝜑 → ((ℑ‘𝑋) · (1 − 0)) ∈ ℂ) |
| 26 | 25 | addlidd 11381 | . . 3 ⊢ (𝜑 → (0 + ((ℑ‘𝑋) · (1 − 0))) = ((ℑ‘𝑋) · (1 − 0))) |
| 27 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 − 0) = 1) |
| 28 | 27 | oveq2d 7405 | . . 3 ⊢ (𝜑 → ((ℑ‘𝑋) · (1 − 0)) = ((ℑ‘𝑋) · 1)) |
| 29 | 12 | mulridd 11197 | . . 3 ⊢ (𝜑 → ((ℑ‘𝑋) · 1) = (ℑ‘𝑋)) |
| 30 | 26, 28, 29 | 3eqtrrd 2770 | . 2 ⊢ (𝜑 → (ℑ‘𝑋) = (0 + ((ℑ‘𝑋) · (1 − 0)))) |
| 31 | 10, 12 | absmuld 15429 | . . . 4 ⊢ (𝜑 → (abs‘(i · (ℑ‘𝑋))) = ((abs‘i) · (abs‘(ℑ‘𝑋)))) |
| 32 | absi 15258 | . . . . . 6 ⊢ (abs‘i) = 1 | |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → (abs‘i) = 1) |
| 34 | 33 | oveq1d 7404 | . . . 4 ⊢ (𝜑 → ((abs‘i) · (abs‘(ℑ‘𝑋))) = (1 · (abs‘(ℑ‘𝑋)))) |
| 35 | 12 | abscld 15411 | . . . . . 6 ⊢ (𝜑 → (abs‘(ℑ‘𝑋)) ∈ ℝ) |
| 36 | 35 | recnd 11208 | . . . . 5 ⊢ (𝜑 → (abs‘(ℑ‘𝑋)) ∈ ℂ) |
| 37 | 36 | mullidd 11198 | . . . 4 ⊢ (𝜑 → (1 · (abs‘(ℑ‘𝑋))) = (abs‘(ℑ‘𝑋))) |
| 38 | 31, 34, 37 | 3eqtrd 2769 | . . 3 ⊢ (𝜑 → (abs‘(i · (ℑ‘𝑋))) = (abs‘(ℑ‘𝑋))) |
| 39 | 13 | subid1d 11528 | . . . 4 ⊢ (𝜑 → ((i · (ℑ‘𝑋)) − 0) = (i · (ℑ‘𝑋))) |
| 40 | 39 | fveq2d 6864 | . . 3 ⊢ (𝜑 → (abs‘((i · (ℑ‘𝑋)) − 0)) = (abs‘(i · (ℑ‘𝑋)))) |
| 41 | 12 | subid1d 11528 | . . . 4 ⊢ (𝜑 → ((ℑ‘𝑋) − 0) = (ℑ‘𝑋)) |
| 42 | 41 | fveq2d 6864 | . . 3 ⊢ (𝜑 → (abs‘((ℑ‘𝑋) − 0)) = (abs‘(ℑ‘𝑋))) |
| 43 | 38, 40, 42 | 3eqtr4rd 2776 | . 2 ⊢ (𝜑 → (abs‘((ℑ‘𝑋) − 0)) = (abs‘((i · (ℑ‘𝑋)) − 0))) |
| 44 | 2, 4, 2, 21, 2, 11, 12, 30, 43 | constrlccl 33753 | 1 ⊢ (𝜑 → (ℑ‘𝑋) ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 0cc0 11074 1c1 11075 ici 11076 + caddc 11077 · cmul 11079 − cmin 11411 -cneg 11412 ℜcre 15069 ℑcim 15070 abscabs 15206 Constrcconstr 33725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-constr 33726 |
| This theorem is referenced by: constrmulcl 33767 |
| Copyright terms: Public domain | W3C validator |