Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrimcl Structured version   Visualization version   GIF version

Theorem constrimcl 33756
Description: Constructible numbers are closed under taking the imaginary part. (Contributed by Thierry Arnoux, 5-Nov-2025.)
Hypothesis
Ref Expression
constrcjcl.1 (𝜑𝑋 ∈ Constr)
Assertion
Ref Expression
constrimcl (𝜑 → (ℑ‘𝑋) ∈ Constr)

Proof of Theorem constrimcl
StepHypRef Expression
1 0zd 12502 . . 3 (𝜑 → 0 ∈ ℤ)
21zconstr 33750 . 2 (𝜑 → 0 ∈ Constr)
3 1zzd 12525 . . 3 (𝜑 → 1 ∈ ℤ)
43zconstr 33750 . 2 (𝜑 → 1 ∈ Constr)
5 constrcjcl.1 . . . . . . 7 (𝜑𝑋 ∈ Constr)
65constrcn 33746 . . . . . 6 (𝜑𝑋 ∈ ℂ)
76recld 15120 . . . . 5 (𝜑 → (ℜ‘𝑋) ∈ ℝ)
87recnd 11162 . . . 4 (𝜑 → (ℜ‘𝑋) ∈ ℂ)
9 ax-icn 11087 . . . . . 6 i ∈ ℂ
109a1i 11 . . . . 5 (𝜑 → i ∈ ℂ)
116imcld 15121 . . . . . 6 (𝜑 → (ℑ‘𝑋) ∈ ℝ)
1211recnd 11162 . . . . 5 (𝜑 → (ℑ‘𝑋) ∈ ℂ)
1310, 12mulcld 11154 . . . 4 (𝜑 → (i · (ℑ‘𝑋)) ∈ ℂ)
146replimd 15123 . . . 4 (𝜑𝑋 = ((ℜ‘𝑋) + (i · (ℑ‘𝑋))))
158, 13, 14mvrladdd 11552 . . 3 (𝜑 → (𝑋 − (ℜ‘𝑋)) = (i · (ℑ‘𝑋)))
166, 8negsubd 11500 . . . 4 (𝜑 → (𝑋 + -(ℜ‘𝑋)) = (𝑋 − (ℜ‘𝑋)))
175constrrecl 33755 . . . . . 6 (𝜑 → (ℜ‘𝑋) ∈ Constr)
1817constrnegcl 33749 . . . . 5 (𝜑 → -(ℜ‘𝑋) ∈ Constr)
195, 18constraddcl 33748 . . . 4 (𝜑 → (𝑋 + -(ℜ‘𝑋)) ∈ Constr)
2016, 19eqeltrrd 2829 . . 3 (𝜑 → (𝑋 − (ℜ‘𝑋)) ∈ Constr)
2115, 20eqeltrrd 2829 . 2 (𝜑 → (i · (ℑ‘𝑋)) ∈ Constr)
22 1m0e1 12263 . . . . . 6 (1 − 0) = 1
23 1cnd 11129 . . . . . 6 (𝜑 → 1 ∈ ℂ)
2422, 23eqeltrid 2832 . . . . 5 (𝜑 → (1 − 0) ∈ ℂ)
2512, 24mulcld 11154 . . . 4 (𝜑 → ((ℑ‘𝑋) · (1 − 0)) ∈ ℂ)
2625addlidd 11336 . . 3 (𝜑 → (0 + ((ℑ‘𝑋) · (1 − 0))) = ((ℑ‘𝑋) · (1 − 0)))
2722a1i 11 . . . 4 (𝜑 → (1 − 0) = 1)
2827oveq2d 7369 . . 3 (𝜑 → ((ℑ‘𝑋) · (1 − 0)) = ((ℑ‘𝑋) · 1))
2912mulridd 11151 . . 3 (𝜑 → ((ℑ‘𝑋) · 1) = (ℑ‘𝑋))
3026, 28, 293eqtrrd 2769 . 2 (𝜑 → (ℑ‘𝑋) = (0 + ((ℑ‘𝑋) · (1 − 0))))
3110, 12absmuld 15383 . . . 4 (𝜑 → (abs‘(i · (ℑ‘𝑋))) = ((abs‘i) · (abs‘(ℑ‘𝑋))))
32 absi 15212 . . . . . 6 (abs‘i) = 1
3332a1i 11 . . . . 5 (𝜑 → (abs‘i) = 1)
3433oveq1d 7368 . . . 4 (𝜑 → ((abs‘i) · (abs‘(ℑ‘𝑋))) = (1 · (abs‘(ℑ‘𝑋))))
3512abscld 15365 . . . . . 6 (𝜑 → (abs‘(ℑ‘𝑋)) ∈ ℝ)
3635recnd 11162 . . . . 5 (𝜑 → (abs‘(ℑ‘𝑋)) ∈ ℂ)
3736mullidd 11152 . . . 4 (𝜑 → (1 · (abs‘(ℑ‘𝑋))) = (abs‘(ℑ‘𝑋)))
3831, 34, 373eqtrd 2768 . . 3 (𝜑 → (abs‘(i · (ℑ‘𝑋))) = (abs‘(ℑ‘𝑋)))
3913subid1d 11483 . . . 4 (𝜑 → ((i · (ℑ‘𝑋)) − 0) = (i · (ℑ‘𝑋)))
4039fveq2d 6830 . . 3 (𝜑 → (abs‘((i · (ℑ‘𝑋)) − 0)) = (abs‘(i · (ℑ‘𝑋))))
4112subid1d 11483 . . . 4 (𝜑 → ((ℑ‘𝑋) − 0) = (ℑ‘𝑋))
4241fveq2d 6830 . . 3 (𝜑 → (abs‘((ℑ‘𝑋) − 0)) = (abs‘(ℑ‘𝑋)))
4338, 40, 423eqtr4rd 2775 . 2 (𝜑 → (abs‘((ℑ‘𝑋) − 0)) = (abs‘((i · (ℑ‘𝑋)) − 0)))
442, 4, 2, 21, 2, 11, 12, 30, 43constrlccl 33743 1 (𝜑 → (ℑ‘𝑋) ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029  ici 11030   + caddc 11031   · cmul 11033  cmin 11366  -cneg 11367  cre 15023  cim 15024  abscabs 15160  Constrcconstr 33715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-seq 13928  df-exp 13988  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-constr 33716
This theorem is referenced by:  constrmulcl  33757
  Copyright terms: Public domain W3C validator