| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrimcl | Structured version Visualization version GIF version | ||
| Description: Constructible numbers are closed under taking the imaginary part. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| constrcjcl.1 | ⊢ (𝜑 → 𝑋 ∈ Constr) |
| Ref | Expression |
|---|---|
| constrimcl | ⊢ (𝜑 → (ℑ‘𝑋) ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 12475 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 2 | 1 | zconstr 33769 | . 2 ⊢ (𝜑 → 0 ∈ Constr) |
| 3 | 1zzd 12498 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 4 | 3 | zconstr 33769 | . 2 ⊢ (𝜑 → 1 ∈ Constr) |
| 5 | constrcjcl.1 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ Constr) | |
| 6 | 5 | constrcn 33765 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 7 | 6 | recld 15096 | . . . . 5 ⊢ (𝜑 → (ℜ‘𝑋) ∈ ℝ) |
| 8 | 7 | recnd 11135 | . . . 4 ⊢ (𝜑 → (ℜ‘𝑋) ∈ ℂ) |
| 9 | ax-icn 11060 | . . . . . 6 ⊢ i ∈ ℂ | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → i ∈ ℂ) |
| 11 | 6 | imcld 15097 | . . . . . 6 ⊢ (𝜑 → (ℑ‘𝑋) ∈ ℝ) |
| 12 | 11 | recnd 11135 | . . . . 5 ⊢ (𝜑 → (ℑ‘𝑋) ∈ ℂ) |
| 13 | 10, 12 | mulcld 11127 | . . . 4 ⊢ (𝜑 → (i · (ℑ‘𝑋)) ∈ ℂ) |
| 14 | 6 | replimd 15099 | . . . 4 ⊢ (𝜑 → 𝑋 = ((ℜ‘𝑋) + (i · (ℑ‘𝑋)))) |
| 15 | 8, 13, 14 | mvrladdd 11525 | . . 3 ⊢ (𝜑 → (𝑋 − (ℜ‘𝑋)) = (i · (ℑ‘𝑋))) |
| 16 | 6, 8 | negsubd 11473 | . . . 4 ⊢ (𝜑 → (𝑋 + -(ℜ‘𝑋)) = (𝑋 − (ℜ‘𝑋))) |
| 17 | 5 | constrrecl 33774 | . . . . . 6 ⊢ (𝜑 → (ℜ‘𝑋) ∈ Constr) |
| 18 | 17 | constrnegcl 33768 | . . . . 5 ⊢ (𝜑 → -(ℜ‘𝑋) ∈ Constr) |
| 19 | 5, 18 | constraddcl 33767 | . . . 4 ⊢ (𝜑 → (𝑋 + -(ℜ‘𝑋)) ∈ Constr) |
| 20 | 16, 19 | eqeltrrd 2832 | . . 3 ⊢ (𝜑 → (𝑋 − (ℜ‘𝑋)) ∈ Constr) |
| 21 | 15, 20 | eqeltrrd 2832 | . 2 ⊢ (𝜑 → (i · (ℑ‘𝑋)) ∈ Constr) |
| 22 | 1m0e1 12236 | . . . . . 6 ⊢ (1 − 0) = 1 | |
| 23 | 1cnd 11102 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 24 | 22, 23 | eqeltrid 2835 | . . . . 5 ⊢ (𝜑 → (1 − 0) ∈ ℂ) |
| 25 | 12, 24 | mulcld 11127 | . . . 4 ⊢ (𝜑 → ((ℑ‘𝑋) · (1 − 0)) ∈ ℂ) |
| 26 | 25 | addlidd 11309 | . . 3 ⊢ (𝜑 → (0 + ((ℑ‘𝑋) · (1 − 0))) = ((ℑ‘𝑋) · (1 − 0))) |
| 27 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 − 0) = 1) |
| 28 | 27 | oveq2d 7357 | . . 3 ⊢ (𝜑 → ((ℑ‘𝑋) · (1 − 0)) = ((ℑ‘𝑋) · 1)) |
| 29 | 12 | mulridd 11124 | . . 3 ⊢ (𝜑 → ((ℑ‘𝑋) · 1) = (ℑ‘𝑋)) |
| 30 | 26, 28, 29 | 3eqtrrd 2771 | . 2 ⊢ (𝜑 → (ℑ‘𝑋) = (0 + ((ℑ‘𝑋) · (1 − 0)))) |
| 31 | 10, 12 | absmuld 15359 | . . . 4 ⊢ (𝜑 → (abs‘(i · (ℑ‘𝑋))) = ((abs‘i) · (abs‘(ℑ‘𝑋)))) |
| 32 | absi 15188 | . . . . . 6 ⊢ (abs‘i) = 1 | |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → (abs‘i) = 1) |
| 34 | 33 | oveq1d 7356 | . . . 4 ⊢ (𝜑 → ((abs‘i) · (abs‘(ℑ‘𝑋))) = (1 · (abs‘(ℑ‘𝑋)))) |
| 35 | 12 | abscld 15341 | . . . . . 6 ⊢ (𝜑 → (abs‘(ℑ‘𝑋)) ∈ ℝ) |
| 36 | 35 | recnd 11135 | . . . . 5 ⊢ (𝜑 → (abs‘(ℑ‘𝑋)) ∈ ℂ) |
| 37 | 36 | mullidd 11125 | . . . 4 ⊢ (𝜑 → (1 · (abs‘(ℑ‘𝑋))) = (abs‘(ℑ‘𝑋))) |
| 38 | 31, 34, 37 | 3eqtrd 2770 | . . 3 ⊢ (𝜑 → (abs‘(i · (ℑ‘𝑋))) = (abs‘(ℑ‘𝑋))) |
| 39 | 13 | subid1d 11456 | . . . 4 ⊢ (𝜑 → ((i · (ℑ‘𝑋)) − 0) = (i · (ℑ‘𝑋))) |
| 40 | 39 | fveq2d 6821 | . . 3 ⊢ (𝜑 → (abs‘((i · (ℑ‘𝑋)) − 0)) = (abs‘(i · (ℑ‘𝑋)))) |
| 41 | 12 | subid1d 11456 | . . . 4 ⊢ (𝜑 → ((ℑ‘𝑋) − 0) = (ℑ‘𝑋)) |
| 42 | 41 | fveq2d 6821 | . . 3 ⊢ (𝜑 → (abs‘((ℑ‘𝑋) − 0)) = (abs‘(ℑ‘𝑋))) |
| 43 | 38, 40, 42 | 3eqtr4rd 2777 | . 2 ⊢ (𝜑 → (abs‘((ℑ‘𝑋) − 0)) = (abs‘((i · (ℑ‘𝑋)) − 0))) |
| 44 | 2, 4, 2, 21, 2, 11, 12, 30, 43 | constrlccl 33762 | 1 ⊢ (𝜑 → (ℑ‘𝑋) ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 0cc0 11001 1c1 11002 ici 11003 + caddc 11004 · cmul 11006 − cmin 11339 -cneg 11340 ℜcre 14999 ℑcim 15000 abscabs 15136 Constrcconstr 33734 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-constr 33735 |
| This theorem is referenced by: constrmulcl 33776 |
| Copyright terms: Public domain | W3C validator |