| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrimcl | Structured version Visualization version GIF version | ||
| Description: Constructible numbers are closed under taking the imaginary part. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| constrcjcl.1 | ⊢ (𝜑 → 𝑋 ∈ Constr) |
| Ref | Expression |
|---|---|
| constrimcl | ⊢ (𝜑 → (ℑ‘𝑋) ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 12592 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 2 | 1 | zconstr 33714 | . 2 ⊢ (𝜑 → 0 ∈ Constr) |
| 3 | 1zzd 12615 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 4 | 3 | zconstr 33714 | . 2 ⊢ (𝜑 → 1 ∈ Constr) |
| 5 | constrcjcl.1 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ Constr) | |
| 6 | 5 | constrcn 33710 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 7 | 6 | recld 15200 | . . . . 5 ⊢ (𝜑 → (ℜ‘𝑋) ∈ ℝ) |
| 8 | 7 | recnd 11255 | . . . 4 ⊢ (𝜑 → (ℜ‘𝑋) ∈ ℂ) |
| 9 | ax-icn 11180 | . . . . . 6 ⊢ i ∈ ℂ | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → i ∈ ℂ) |
| 11 | 6 | imcld 15201 | . . . . . 6 ⊢ (𝜑 → (ℑ‘𝑋) ∈ ℝ) |
| 12 | 11 | recnd 11255 | . . . . 5 ⊢ (𝜑 → (ℑ‘𝑋) ∈ ℂ) |
| 13 | 10, 12 | mulcld 11247 | . . . 4 ⊢ (𝜑 → (i · (ℑ‘𝑋)) ∈ ℂ) |
| 14 | 6 | replimd 15203 | . . . 4 ⊢ (𝜑 → 𝑋 = ((ℜ‘𝑋) + (i · (ℑ‘𝑋)))) |
| 15 | 8, 13, 14 | mvrladdd 11642 | . . 3 ⊢ (𝜑 → (𝑋 − (ℜ‘𝑋)) = (i · (ℑ‘𝑋))) |
| 16 | 6, 8 | negsubd 11592 | . . . 4 ⊢ (𝜑 → (𝑋 + -(ℜ‘𝑋)) = (𝑋 − (ℜ‘𝑋))) |
| 17 | 5 | constrrecl 33719 | . . . . . 6 ⊢ (𝜑 → (ℜ‘𝑋) ∈ Constr) |
| 18 | 17 | constrnegcl 33713 | . . . . 5 ⊢ (𝜑 → -(ℜ‘𝑋) ∈ Constr) |
| 19 | 5, 18 | constraddcl 33712 | . . . 4 ⊢ (𝜑 → (𝑋 + -(ℜ‘𝑋)) ∈ Constr) |
| 20 | 16, 19 | eqeltrrd 2834 | . . 3 ⊢ (𝜑 → (𝑋 − (ℜ‘𝑋)) ∈ Constr) |
| 21 | 15, 20 | eqeltrrd 2834 | . 2 ⊢ (𝜑 → (i · (ℑ‘𝑋)) ∈ Constr) |
| 22 | 1m0e1 12353 | . . . . . 6 ⊢ (1 − 0) = 1 | |
| 23 | 1cnd 11222 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 24 | 22, 23 | eqeltrid 2837 | . . . . 5 ⊢ (𝜑 → (1 − 0) ∈ ℂ) |
| 25 | 12, 24 | mulcld 11247 | . . . 4 ⊢ (𝜑 → ((ℑ‘𝑋) · (1 − 0)) ∈ ℂ) |
| 26 | 25 | addlidd 11428 | . . 3 ⊢ (𝜑 → (0 + ((ℑ‘𝑋) · (1 − 0))) = ((ℑ‘𝑋) · (1 − 0))) |
| 27 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 − 0) = 1) |
| 28 | 27 | oveq2d 7415 | . . 3 ⊢ (𝜑 → ((ℑ‘𝑋) · (1 − 0)) = ((ℑ‘𝑋) · 1)) |
| 29 | 12 | mulridd 11244 | . . 3 ⊢ (𝜑 → ((ℑ‘𝑋) · 1) = (ℑ‘𝑋)) |
| 30 | 26, 28, 29 | 3eqtrrd 2774 | . 2 ⊢ (𝜑 → (ℑ‘𝑋) = (0 + ((ℑ‘𝑋) · (1 − 0)))) |
| 31 | 10, 12 | absmuld 15460 | . . . 4 ⊢ (𝜑 → (abs‘(i · (ℑ‘𝑋))) = ((abs‘i) · (abs‘(ℑ‘𝑋)))) |
| 32 | absi 15292 | . . . . . 6 ⊢ (abs‘i) = 1 | |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → (abs‘i) = 1) |
| 34 | 33 | oveq1d 7414 | . . . 4 ⊢ (𝜑 → ((abs‘i) · (abs‘(ℑ‘𝑋))) = (1 · (abs‘(ℑ‘𝑋)))) |
| 35 | 12 | abscld 15442 | . . . . . 6 ⊢ (𝜑 → (abs‘(ℑ‘𝑋)) ∈ ℝ) |
| 36 | 35 | recnd 11255 | . . . . 5 ⊢ (𝜑 → (abs‘(ℑ‘𝑋)) ∈ ℂ) |
| 37 | 36 | mullidd 11245 | . . . 4 ⊢ (𝜑 → (1 · (abs‘(ℑ‘𝑋))) = (abs‘(ℑ‘𝑋))) |
| 38 | 31, 34, 37 | 3eqtrd 2773 | . . 3 ⊢ (𝜑 → (abs‘(i · (ℑ‘𝑋))) = (abs‘(ℑ‘𝑋))) |
| 39 | 13 | subid1d 11575 | . . . 4 ⊢ (𝜑 → ((i · (ℑ‘𝑋)) − 0) = (i · (ℑ‘𝑋))) |
| 40 | 39 | fveq2d 6876 | . . 3 ⊢ (𝜑 → (abs‘((i · (ℑ‘𝑋)) − 0)) = (abs‘(i · (ℑ‘𝑋)))) |
| 41 | 12 | subid1d 11575 | . . . 4 ⊢ (𝜑 → ((ℑ‘𝑋) − 0) = (ℑ‘𝑋)) |
| 42 | 41 | fveq2d 6876 | . . 3 ⊢ (𝜑 → (abs‘((ℑ‘𝑋) − 0)) = (abs‘(ℑ‘𝑋))) |
| 43 | 38, 40, 42 | 3eqtr4rd 2780 | . 2 ⊢ (𝜑 → (abs‘((ℑ‘𝑋) − 0)) = (abs‘((i · (ℑ‘𝑋)) − 0))) |
| 44 | 2, 4, 2, 21, 2, 11, 12, 30, 43 | constrlccl 33707 | 1 ⊢ (𝜑 → (ℑ‘𝑋) ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6527 (class class class)co 7399 ℂcc 11119 0cc0 11121 1c1 11122 ici 11123 + caddc 11124 · cmul 11126 − cmin 11458 -cneg 11459 ℜcre 15103 ℑcim 15104 abscabs 15240 Constrcconstr 33679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-sup 9448 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-n0 12494 df-z 12581 df-uz 12845 df-rp 13001 df-seq 14009 df-exp 14069 df-cj 15105 df-re 15106 df-im 15107 df-sqrt 15241 df-abs 15242 df-constr 33680 |
| This theorem is referenced by: constrmulcl 33721 |
| Copyright terms: Public domain | W3C validator |