Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrabscl Structured version   Visualization version   GIF version

Theorem constrabscl 33745
Description: Constructible numbers are closed under absolute value (modulus). (Contributed by Thierry Arnoux, 6-Nov-2025.)
Hypothesis
Ref Expression
constrabscl.1 (𝜑𝑋 ∈ Constr)
Assertion
Ref Expression
constrabscl (𝜑 → (abs‘𝑋) ∈ Constr)

Proof of Theorem constrabscl
StepHypRef Expression
1 0zd 12483 . . 3 (𝜑 → 0 ∈ ℤ)
21zconstr 33731 . 2 (𝜑 → 0 ∈ Constr)
3 1zzd 12506 . . 3 (𝜑 → 1 ∈ ℤ)
43zconstr 33731 . 2 (𝜑 → 1 ∈ Constr)
5 constrabscl.1 . 2 (𝜑𝑋 ∈ Constr)
65constrcn 33727 . . 3 (𝜑𝑋 ∈ ℂ)
76abscld 15346 . 2 (𝜑 → (abs‘𝑋) ∈ ℝ)
87recnd 11143 . 2 (𝜑 → (abs‘𝑋) ∈ ℂ)
9 1m0e1 12244 . . . . . . 7 (1 − 0) = 1
109a1i 11 . . . . . 6 (𝜑 → (1 − 0) = 1)
11 ax-1cn 11067 . . . . . 6 1 ∈ ℂ
1210, 11eqeltrdi 2836 . . . . 5 (𝜑 → (1 − 0) ∈ ℂ)
138, 12mulcld 11135 . . . 4 (𝜑 → ((abs‘𝑋) · (1 − 0)) ∈ ℂ)
1413addlidd 11317 . . 3 (𝜑 → (0 + ((abs‘𝑋) · (1 − 0))) = ((abs‘𝑋) · (1 − 0)))
1510oveq2d 7365 . . 3 (𝜑 → ((abs‘𝑋) · (1 − 0)) = ((abs‘𝑋) · 1))
168mulridd 11132 . . 3 (𝜑 → ((abs‘𝑋) · 1) = (abs‘𝑋))
1714, 15, 163eqtrrd 2769 . 2 (𝜑 → (abs‘𝑋) = (0 + ((abs‘𝑋) · (1 − 0))))
186absge0d 15354 . . . 4 (𝜑 → 0 ≤ (abs‘𝑋))
197, 18absidd 15330 . . 3 (𝜑 → (abs‘(abs‘𝑋)) = (abs‘𝑋))
208subid1d 11464 . . . 4 (𝜑 → ((abs‘𝑋) − 0) = (abs‘𝑋))
2120fveq2d 6826 . . 3 (𝜑 → (abs‘((abs‘𝑋) − 0)) = (abs‘(abs‘𝑋)))
226subid1d 11464 . . . 4 (𝜑 → (𝑋 − 0) = 𝑋)
2322fveq2d 6826 . . 3 (𝜑 → (abs‘(𝑋 − 0)) = (abs‘𝑋))
2419, 21, 233eqtr4d 2774 . 2 (𝜑 → (abs‘((abs‘𝑋) − 0)) = (abs‘(𝑋 − 0)))
252, 4, 2, 5, 2, 7, 8, 17, 24constrlccl 33724 1 (𝜑 → (abs‘𝑋) ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  abscabs 15141  Constrcconstr 33696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-constr 33697
This theorem is referenced by:  constrsqrtcl  33746
  Copyright terms: Public domain W3C validator