Proof of Theorem constrresqrtcl
| Step | Hyp | Ref
| Expression |
| 1 | | 0zd 12592 |
. . 3
⊢ (𝜑 → 0 ∈
ℤ) |
| 2 | 1 | zconstr 33714 |
. 2
⊢ (𝜑 → 0 ∈
Constr) |
| 3 | | 1zzd 12615 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
| 4 | 3 | zconstr 33714 |
. 2
⊢ (𝜑 → 1 ∈
Constr) |
| 5 | | iconstr 33716 |
. . . 4
⊢ i ∈
Constr |
| 6 | 5 | a1i 11 |
. . 3
⊢ (𝜑 → i ∈
Constr) |
| 7 | | constrresqrtcl.2 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 8 | 7 | recnd 11255 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 9 | | 1cnd 11222 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℂ) |
| 10 | 8, 9 | subcld 11586 |
. . . . 5
⊢ (𝜑 → (𝑋 − 1) ∈ ℂ) |
| 11 | | 2cnd 12310 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℂ) |
| 12 | | 2ne0 12336 |
. . . . . 6
⊢ 2 ≠
0 |
| 13 | 12 | a1i 11 |
. . . . 5
⊢ (𝜑 → 2 ≠ 0) |
| 14 | 10, 11, 13 | divrecd 12012 |
. . . 4
⊢ (𝜑 → ((𝑋 − 1) / 2) = ((𝑋 − 1) · (1 /
2))) |
| 15 | 8, 9 | negsubd 11592 |
. . . . . 6
⊢ (𝜑 → (𝑋 + -1) = (𝑋 − 1)) |
| 16 | | constrresqrtcl.1 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ Constr) |
| 17 | 4 | constrnegcl 33713 |
. . . . . . 7
⊢ (𝜑 → -1 ∈
Constr) |
| 18 | 16, 17 | constraddcl 33712 |
. . . . . 6
⊢ (𝜑 → (𝑋 + -1) ∈ Constr) |
| 19 | 15, 18 | eqeltrrd 2834 |
. . . . 5
⊢ (𝜑 → (𝑋 − 1) ∈ Constr) |
| 20 | | 2z 12616 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
| 21 | 20 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℤ) |
| 22 | 21 | zconstr 33714 |
. . . . . 6
⊢ (𝜑 → 2 ∈
Constr) |
| 23 | 22, 13 | constrinvcl 33723 |
. . . . 5
⊢ (𝜑 → (1 / 2) ∈
Constr) |
| 24 | 19, 23 | constrmulcl 33721 |
. . . 4
⊢ (𝜑 → ((𝑋 − 1) · (1 / 2)) ∈
Constr) |
| 25 | 14, 24 | eqeltrd 2833 |
. . 3
⊢ (𝜑 → ((𝑋 − 1) / 2) ∈
Constr) |
| 26 | 6, 25 | constrmulcl 33721 |
. 2
⊢ (𝜑 → (i · ((𝑋 − 1) / 2)) ∈
Constr) |
| 27 | 8, 9 | addcld 11246 |
. . . 4
⊢ (𝜑 → (𝑋 + 1) ∈ ℂ) |
| 28 | 27, 11, 13 | divrecd 12012 |
. . 3
⊢ (𝜑 → ((𝑋 + 1) / 2) = ((𝑋 + 1) · (1 / 2))) |
| 29 | 16, 4 | constraddcl 33712 |
. . . 4
⊢ (𝜑 → (𝑋 + 1) ∈ Constr) |
| 30 | 29, 23 | constrmulcl 33721 |
. . 3
⊢ (𝜑 → ((𝑋 + 1) · (1 / 2)) ∈
Constr) |
| 31 | 28, 30 | eqeltrd 2833 |
. 2
⊢ (𝜑 → ((𝑋 + 1) / 2) ∈ Constr) |
| 32 | | constrresqrtcl.3 |
. . 3
⊢ (𝜑 → 0 ≤ 𝑋) |
| 33 | 7, 32 | resqrtcld 15423 |
. 2
⊢ (𝜑 → (√‘𝑋) ∈
ℝ) |
| 34 | 33 | recnd 11255 |
. 2
⊢ (𝜑 → (√‘𝑋) ∈
ℂ) |
| 35 | 9 | subid1d 11575 |
. . . . . 6
⊢ (𝜑 → (1 − 0) =
1) |
| 36 | 35, 9 | eqeltrd 2833 |
. . . . 5
⊢ (𝜑 → (1 − 0) ∈
ℂ) |
| 37 | 34, 36 | mulcld 11247 |
. . . 4
⊢ (𝜑 → ((√‘𝑋) · (1 − 0)) ∈
ℂ) |
| 38 | 37 | addlidd 11428 |
. . 3
⊢ (𝜑 → (0 + ((√‘𝑋) · (1 − 0))) =
((√‘𝑋) ·
(1 − 0))) |
| 39 | 35 | oveq2d 7415 |
. . 3
⊢ (𝜑 → ((√‘𝑋) · (1 − 0)) =
((√‘𝑋) ·
1)) |
| 40 | 34 | mulridd 11244 |
. . 3
⊢ (𝜑 → ((√‘𝑋) · 1) =
(√‘𝑋)) |
| 41 | 38, 39, 40 | 3eqtrrd 2774 |
. 2
⊢ (𝜑 → (√‘𝑋) = (0 + ((√‘𝑋) · (1 −
0)))) |
| 42 | | 1red 11228 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℝ) |
| 43 | 7, 42 | readdcld 11256 |
. . . . 5
⊢ (𝜑 → (𝑋 + 1) ∈ ℝ) |
| 44 | 43 | rehalfcld 12480 |
. . . 4
⊢ (𝜑 → ((𝑋 + 1) / 2) ∈ ℝ) |
| 45 | | 2rp 13005 |
. . . . . 6
⊢ 2 ∈
ℝ+ |
| 46 | 45 | a1i 11 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℝ+) |
| 47 | | 0red 11230 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℝ) |
| 48 | 7 | lep1d 12165 |
. . . . . 6
⊢ (𝜑 → 𝑋 ≤ (𝑋 + 1)) |
| 49 | 47, 7, 43, 32, 48 | letrd 11384 |
. . . . 5
⊢ (𝜑 → 0 ≤ (𝑋 + 1)) |
| 50 | 43, 46, 49 | divge0d 13083 |
. . . 4
⊢ (𝜑 → 0 ≤ ((𝑋 + 1) / 2)) |
| 51 | 44, 50 | absidd 15428 |
. . 3
⊢ (𝜑 → (abs‘((𝑋 + 1) / 2)) = ((𝑋 + 1) / 2)) |
| 52 | 27 | halfcld 12478 |
. . . . 5
⊢ (𝜑 → ((𝑋 + 1) / 2) ∈ ℂ) |
| 53 | 52 | subid1d 11575 |
. . . 4
⊢ (𝜑 → (((𝑋 + 1) / 2) − 0) = ((𝑋 + 1) / 2)) |
| 54 | 53 | fveq2d 6876 |
. . 3
⊢ (𝜑 → (abs‘(((𝑋 + 1) / 2) − 0)) =
(abs‘((𝑋 + 1) /
2))) |
| 55 | | ax-icn 11180 |
. . . . . . . . 9
⊢ i ∈
ℂ |
| 56 | 55 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → i ∈
ℂ) |
| 57 | 7, 42 | resubcld 11657 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 − 1) ∈ ℝ) |
| 58 | 57 | rehalfcld 12480 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋 − 1) / 2) ∈
ℝ) |
| 59 | 58 | recnd 11255 |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 − 1) / 2) ∈
ℂ) |
| 60 | 56, 59 | mulneg2d 11683 |
. . . . . . 7
⊢ (𝜑 → (i · -((𝑋 − 1) / 2)) = -(i ·
((𝑋 − 1) /
2))) |
| 61 | 60 | oveq2d 7415 |
. . . . . 6
⊢ (𝜑 → ((√‘𝑋) + (i · -((𝑋 − 1) / 2))) =
((√‘𝑋) + -(i
· ((𝑋 − 1) /
2)))) |
| 62 | 26 | constrcn 33710 |
. . . . . . 7
⊢ (𝜑 → (i · ((𝑋 − 1) / 2)) ∈
ℂ) |
| 63 | 34, 62 | negsubd 11592 |
. . . . . 6
⊢ (𝜑 → ((√‘𝑋) + -(i · ((𝑋 − 1) / 2))) =
((√‘𝑋) −
(i · ((𝑋 − 1)
/ 2)))) |
| 64 | 61, 63 | eqtr2d 2770 |
. . . . 5
⊢ (𝜑 → ((√‘𝑋) − (i · ((𝑋 − 1) / 2))) =
((√‘𝑋) + (i
· -((𝑋 − 1) /
2)))) |
| 65 | 64 | fveq2d 6876 |
. . . 4
⊢ (𝜑 →
(abs‘((√‘𝑋) − (i · ((𝑋 − 1) / 2)))) =
(abs‘((√‘𝑋) + (i · -((𝑋 − 1) / 2))))) |
| 66 | 58 | renegcld 11656 |
. . . . 5
⊢ (𝜑 → -((𝑋 − 1) / 2) ∈
ℝ) |
| 67 | | absreim 15299 |
. . . . 5
⊢
(((√‘𝑋)
∈ ℝ ∧ -((𝑋
− 1) / 2) ∈ ℝ) → (abs‘((√‘𝑋) + (i · -((𝑋 − 1) / 2)))) =
(√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2)))) |
| 68 | 33, 66, 67 | syl2anc 584 |
. . . 4
⊢ (𝜑 →
(abs‘((√‘𝑋) + (i · -((𝑋 − 1) / 2)))) =
(√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2)))) |
| 69 | | sq2 14203 |
. . . . . . . . . . 11
⊢
(2↑2) = 4 |
| 70 | 69 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (2↑2) =
4) |
| 71 | 70 | oveq2d 7415 |
. . . . . . . . 9
⊢ (𝜑 → ((4 · 𝑋) / (2↑2)) = ((4 ·
𝑋) / 4)) |
| 72 | | 4cn 12317 |
. . . . . . . . . . 11
⊢ 4 ∈
ℂ |
| 73 | 72 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 4 ∈
ℂ) |
| 74 | 11, 13, 21 | expne0d 14159 |
. . . . . . . . . . 11
⊢ (𝜑 → (2↑2) ≠
0) |
| 75 | 69, 74 | eqnetrrid 3006 |
. . . . . . . . . 10
⊢ (𝜑 → 4 ≠ 0) |
| 76 | 8, 73, 75 | divcan3d 12014 |
. . . . . . . . 9
⊢ (𝜑 → ((4 · 𝑋) / 4) = 𝑋) |
| 77 | 71, 76 | eqtr2d 2770 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 = ((4 · 𝑋) / (2↑2))) |
| 78 | 10, 11, 13 | sqdivd 14166 |
. . . . . . . 8
⊢ (𝜑 → (((𝑋 − 1) / 2)↑2) = (((𝑋 − 1)↑2) /
(2↑2))) |
| 79 | 77, 78 | oveq12d 7417 |
. . . . . . 7
⊢ (𝜑 → (𝑋 + (((𝑋 − 1) / 2)↑2)) = (((4 ·
𝑋) / (2↑2)) + (((𝑋 − 1)↑2) /
(2↑2)))) |
| 80 | 8 | sqsqrtd 15445 |
. . . . . . . 8
⊢ (𝜑 → ((√‘𝑋)↑2) = 𝑋) |
| 81 | 59 | sqnegd 14123 |
. . . . . . . 8
⊢ (𝜑 → (-((𝑋 − 1) / 2)↑2) = (((𝑋 − 1) /
2)↑2)) |
| 82 | 80, 81 | oveq12d 7417 |
. . . . . . 7
⊢ (𝜑 → (((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2)) =
(𝑋 + (((𝑋 − 1) / 2)↑2))) |
| 83 | 27, 11, 13 | sqdivd 14166 |
. . . . . . . 8
⊢ (𝜑 → (((𝑋 + 1) / 2)↑2) = (((𝑋 + 1)↑2) /
(2↑2))) |
| 84 | 27 | sqcld 14151 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑋 + 1)↑2) ∈
ℂ) |
| 85 | 10 | sqcld 14151 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑋 − 1)↑2) ∈
ℂ) |
| 86 | 73, 8 | mulcld 11247 |
. . . . . . . . . 10
⊢ (𝜑 → (4 · 𝑋) ∈
ℂ) |
| 87 | 8, 9 | binom2subadd 32653 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4 · (𝑋 · 1))) |
| 88 | 8 | mulridd 11244 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 · 1) = 𝑋) |
| 89 | 88 | oveq2d 7415 |
. . . . . . . . . . 11
⊢ (𝜑 → (4 · (𝑋 · 1)) = (4 ·
𝑋)) |
| 90 | 87, 89 | eqtrd 2769 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4 · 𝑋)) |
| 91 | | subadd2 11478 |
. . . . . . . . . . 11
⊢ ((((𝑋 + 1)↑2) ∈ ℂ
∧ ((𝑋 −
1)↑2) ∈ ℂ ∧ (4 · 𝑋) ∈ ℂ) → ((((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4
· 𝑋) ↔ ((4
· 𝑋) + ((𝑋 − 1)↑2)) = ((𝑋 + 1)↑2))) |
| 92 | 91 | biimpa 476 |
. . . . . . . . . 10
⊢
(((((𝑋 + 1)↑2)
∈ ℂ ∧ ((𝑋
− 1)↑2) ∈ ℂ ∧ (4 · 𝑋) ∈ ℂ) ∧ (((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4 · 𝑋)) → ((4 · 𝑋) + ((𝑋 − 1)↑2)) = ((𝑋 + 1)↑2)) |
| 93 | 84, 85, 86, 90, 92 | syl31anc 1374 |
. . . . . . . . 9
⊢ (𝜑 → ((4 · 𝑋) + ((𝑋 − 1)↑2)) = ((𝑋 + 1)↑2)) |
| 94 | 93 | oveq1d 7414 |
. . . . . . . 8
⊢ (𝜑 → (((4 · 𝑋) + ((𝑋 − 1)↑2)) / (2↑2)) =
(((𝑋 + 1)↑2) /
(2↑2))) |
| 95 | 11 | sqcld 14151 |
. . . . . . . . 9
⊢ (𝜑 → (2↑2) ∈
ℂ) |
| 96 | 86, 85, 95, 74 | divdird 12047 |
. . . . . . . 8
⊢ (𝜑 → (((4 · 𝑋) + ((𝑋 − 1)↑2)) / (2↑2)) = (((4
· 𝑋) / (2↑2)) +
(((𝑋 − 1)↑2) /
(2↑2)))) |
| 97 | 83, 94, 96 | 3eqtr2d 2775 |
. . . . . . 7
⊢ (𝜑 → (((𝑋 + 1) / 2)↑2) = (((4 · 𝑋) / (2↑2)) + (((𝑋 − 1)↑2) /
(2↑2)))) |
| 98 | 79, 82, 97 | 3eqtr4d 2779 |
. . . . . 6
⊢ (𝜑 → (((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2)) =
(((𝑋 + 1) /
2)↑2)) |
| 99 | 98 | fveq2d 6876 |
. . . . 5
⊢ (𝜑 →
(√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2))) =
(√‘(((𝑋 + 1) /
2)↑2))) |
| 100 | 44, 50 | sqrtsqd 15425 |
. . . . 5
⊢ (𝜑 → (√‘(((𝑋 + 1) / 2)↑2)) = ((𝑋 + 1) / 2)) |
| 101 | 99, 100 | eqtrd 2769 |
. . . 4
⊢ (𝜑 →
(√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2))) = ((𝑋 + 1) / 2)) |
| 102 | 65, 68, 101 | 3eqtrd 2773 |
. . 3
⊢ (𝜑 →
(abs‘((√‘𝑋) − (i · ((𝑋 − 1) / 2)))) = ((𝑋 + 1) / 2)) |
| 103 | 51, 54, 102 | 3eqtr4rd 2780 |
. 2
⊢ (𝜑 →
(abs‘((√‘𝑋) − (i · ((𝑋 − 1) / 2)))) = (abs‘(((𝑋 + 1) / 2) −
0))) |
| 104 | 2, 4, 26, 31, 2, 33, 34, 41, 103 | constrlccl 33707 |
1
⊢ (𝜑 → (√‘𝑋) ∈
Constr) |