Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrresqrtcl Structured version   Visualization version   GIF version

Theorem constrresqrtcl 33763
Description: If a positive real number 𝑋 is constructible, then, so is its square root. (Contributed by Thierry Arnoux, 5-Nov-2025.)
Hypotheses
Ref Expression
constrresqrtcl.1 (𝜑𝑋 ∈ Constr)
constrresqrtcl.2 (𝜑𝑋 ∈ ℝ)
constrresqrtcl.3 (𝜑 → 0 ≤ 𝑋)
Assertion
Ref Expression
constrresqrtcl (𝜑 → (√‘𝑋) ∈ Constr)

Proof of Theorem constrresqrtcl
StepHypRef Expression
1 0zd 12502 . . 3 (𝜑 → 0 ∈ ℤ)
21zconstr 33750 . 2 (𝜑 → 0 ∈ Constr)
3 1zzd 12525 . . 3 (𝜑 → 1 ∈ ℤ)
43zconstr 33750 . 2 (𝜑 → 1 ∈ Constr)
5 iconstr 33752 . . . 4 i ∈ Constr
65a1i 11 . . 3 (𝜑 → i ∈ Constr)
7 constrresqrtcl.2 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
87recnd 11162 . . . . . 6 (𝜑𝑋 ∈ ℂ)
9 1cnd 11129 . . . . . 6 (𝜑 → 1 ∈ ℂ)
108, 9subcld 11494 . . . . 5 (𝜑 → (𝑋 − 1) ∈ ℂ)
11 2cnd 12225 . . . . 5 (𝜑 → 2 ∈ ℂ)
12 2ne0 12251 . . . . . 6 2 ≠ 0
1312a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
1410, 11, 13divrecd 11922 . . . 4 (𝜑 → ((𝑋 − 1) / 2) = ((𝑋 − 1) · (1 / 2)))
158, 9negsubd 11500 . . . . . 6 (𝜑 → (𝑋 + -1) = (𝑋 − 1))
16 constrresqrtcl.1 . . . . . . 7 (𝜑𝑋 ∈ Constr)
174constrnegcl 33749 . . . . . . 7 (𝜑 → -1 ∈ Constr)
1816, 17constraddcl 33748 . . . . . 6 (𝜑 → (𝑋 + -1) ∈ Constr)
1915, 18eqeltrrd 2829 . . . . 5 (𝜑 → (𝑋 − 1) ∈ Constr)
20 2z 12526 . . . . . . . 8 2 ∈ ℤ
2120a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℤ)
2221zconstr 33750 . . . . . 6 (𝜑 → 2 ∈ Constr)
2322, 13constrinvcl 33759 . . . . 5 (𝜑 → (1 / 2) ∈ Constr)
2419, 23constrmulcl 33757 . . . 4 (𝜑 → ((𝑋 − 1) · (1 / 2)) ∈ Constr)
2514, 24eqeltrd 2828 . . 3 (𝜑 → ((𝑋 − 1) / 2) ∈ Constr)
266, 25constrmulcl 33757 . 2 (𝜑 → (i · ((𝑋 − 1) / 2)) ∈ Constr)
278, 9addcld 11153 . . . 4 (𝜑 → (𝑋 + 1) ∈ ℂ)
2827, 11, 13divrecd 11922 . . 3 (𝜑 → ((𝑋 + 1) / 2) = ((𝑋 + 1) · (1 / 2)))
2916, 4constraddcl 33748 . . . 4 (𝜑 → (𝑋 + 1) ∈ Constr)
3029, 23constrmulcl 33757 . . 3 (𝜑 → ((𝑋 + 1) · (1 / 2)) ∈ Constr)
3128, 30eqeltrd 2828 . 2 (𝜑 → ((𝑋 + 1) / 2) ∈ Constr)
32 constrresqrtcl.3 . . 3 (𝜑 → 0 ≤ 𝑋)
337, 32resqrtcld 15344 . 2 (𝜑 → (√‘𝑋) ∈ ℝ)
3433recnd 11162 . 2 (𝜑 → (√‘𝑋) ∈ ℂ)
359subid1d 11483 . . . . . 6 (𝜑 → (1 − 0) = 1)
3635, 9eqeltrd 2828 . . . . 5 (𝜑 → (1 − 0) ∈ ℂ)
3734, 36mulcld 11154 . . . 4 (𝜑 → ((√‘𝑋) · (1 − 0)) ∈ ℂ)
3837addlidd 11336 . . 3 (𝜑 → (0 + ((√‘𝑋) · (1 − 0))) = ((√‘𝑋) · (1 − 0)))
3935oveq2d 7369 . . 3 (𝜑 → ((√‘𝑋) · (1 − 0)) = ((√‘𝑋) · 1))
4034mulridd 11151 . . 3 (𝜑 → ((√‘𝑋) · 1) = (√‘𝑋))
4138, 39, 403eqtrrd 2769 . 2 (𝜑 → (√‘𝑋) = (0 + ((√‘𝑋) · (1 − 0))))
42 1red 11135 . . . . . 6 (𝜑 → 1 ∈ ℝ)
437, 42readdcld 11163 . . . . 5 (𝜑 → (𝑋 + 1) ∈ ℝ)
4443rehalfcld 12390 . . . 4 (𝜑 → ((𝑋 + 1) / 2) ∈ ℝ)
45 2rp 12917 . . . . . 6 2 ∈ ℝ+
4645a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ+)
47 0red 11137 . . . . . 6 (𝜑 → 0 ∈ ℝ)
487lep1d 12075 . . . . . 6 (𝜑𝑋 ≤ (𝑋 + 1))
4947, 7, 43, 32, 48letrd 11292 . . . . 5 (𝜑 → 0 ≤ (𝑋 + 1))
5043, 46, 49divge0d 12996 . . . 4 (𝜑 → 0 ≤ ((𝑋 + 1) / 2))
5144, 50absidd 15349 . . 3 (𝜑 → (abs‘((𝑋 + 1) / 2)) = ((𝑋 + 1) / 2))
5227halfcld 12388 . . . . 5 (𝜑 → ((𝑋 + 1) / 2) ∈ ℂ)
5352subid1d 11483 . . . 4 (𝜑 → (((𝑋 + 1) / 2) − 0) = ((𝑋 + 1) / 2))
5453fveq2d 6830 . . 3 (𝜑 → (abs‘(((𝑋 + 1) / 2) − 0)) = (abs‘((𝑋 + 1) / 2)))
55 ax-icn 11087 . . . . . . . . 9 i ∈ ℂ
5655a1i 11 . . . . . . . 8 (𝜑 → i ∈ ℂ)
577, 42resubcld 11567 . . . . . . . . . 10 (𝜑 → (𝑋 − 1) ∈ ℝ)
5857rehalfcld 12390 . . . . . . . . 9 (𝜑 → ((𝑋 − 1) / 2) ∈ ℝ)
5958recnd 11162 . . . . . . . 8 (𝜑 → ((𝑋 − 1) / 2) ∈ ℂ)
6056, 59mulneg2d 11593 . . . . . . 7 (𝜑 → (i · -((𝑋 − 1) / 2)) = -(i · ((𝑋 − 1) / 2)))
6160oveq2d 7369 . . . . . 6 (𝜑 → ((√‘𝑋) + (i · -((𝑋 − 1) / 2))) = ((√‘𝑋) + -(i · ((𝑋 − 1) / 2))))
6226constrcn 33746 . . . . . . 7 (𝜑 → (i · ((𝑋 − 1) / 2)) ∈ ℂ)
6334, 62negsubd 11500 . . . . . 6 (𝜑 → ((√‘𝑋) + -(i · ((𝑋 − 1) / 2))) = ((√‘𝑋) − (i · ((𝑋 − 1) / 2))))
6461, 63eqtr2d 2765 . . . . 5 (𝜑 → ((√‘𝑋) − (i · ((𝑋 − 1) / 2))) = ((√‘𝑋) + (i · -((𝑋 − 1) / 2))))
6564fveq2d 6830 . . . 4 (𝜑 → (abs‘((√‘𝑋) − (i · ((𝑋 − 1) / 2)))) = (abs‘((√‘𝑋) + (i · -((𝑋 − 1) / 2)))))
6658renegcld 11566 . . . . 5 (𝜑 → -((𝑋 − 1) / 2) ∈ ℝ)
67 absreim 15219 . . . . 5 (((√‘𝑋) ∈ ℝ ∧ -((𝑋 − 1) / 2) ∈ ℝ) → (abs‘((√‘𝑋) + (i · -((𝑋 − 1) / 2)))) = (√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2))))
6833, 66, 67syl2anc 584 . . . 4 (𝜑 → (abs‘((√‘𝑋) + (i · -((𝑋 − 1) / 2)))) = (√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2))))
69 sq2 14123 . . . . . . . . . . 11 (2↑2) = 4
7069a1i 11 . . . . . . . . . 10 (𝜑 → (2↑2) = 4)
7170oveq2d 7369 . . . . . . . . 9 (𝜑 → ((4 · 𝑋) / (2↑2)) = ((4 · 𝑋) / 4))
72 4cn 12232 . . . . . . . . . . 11 4 ∈ ℂ
7372a1i 11 . . . . . . . . . 10 (𝜑 → 4 ∈ ℂ)
7411, 13, 21expne0d 14078 . . . . . . . . . . 11 (𝜑 → (2↑2) ≠ 0)
7569, 74eqnetrrid 3000 . . . . . . . . . 10 (𝜑 → 4 ≠ 0)
768, 73, 75divcan3d 11924 . . . . . . . . 9 (𝜑 → ((4 · 𝑋) / 4) = 𝑋)
7771, 76eqtr2d 2765 . . . . . . . 8 (𝜑𝑋 = ((4 · 𝑋) / (2↑2)))
7810, 11, 13sqdivd 14085 . . . . . . . 8 (𝜑 → (((𝑋 − 1) / 2)↑2) = (((𝑋 − 1)↑2) / (2↑2)))
7977, 78oveq12d 7371 . . . . . . 7 (𝜑 → (𝑋 + (((𝑋 − 1) / 2)↑2)) = (((4 · 𝑋) / (2↑2)) + (((𝑋 − 1)↑2) / (2↑2))))
808sqsqrtd 15368 . . . . . . . 8 (𝜑 → ((√‘𝑋)↑2) = 𝑋)
8159sqnegd 14042 . . . . . . . 8 (𝜑 → (-((𝑋 − 1) / 2)↑2) = (((𝑋 − 1) / 2)↑2))
8280, 81oveq12d 7371 . . . . . . 7 (𝜑 → (((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2)) = (𝑋 + (((𝑋 − 1) / 2)↑2)))
8327, 11, 13sqdivd 14085 . . . . . . . 8 (𝜑 → (((𝑋 + 1) / 2)↑2) = (((𝑋 + 1)↑2) / (2↑2)))
8427sqcld 14070 . . . . . . . . . 10 (𝜑 → ((𝑋 + 1)↑2) ∈ ℂ)
8510sqcld 14070 . . . . . . . . . 10 (𝜑 → ((𝑋 − 1)↑2) ∈ ℂ)
8673, 8mulcld 11154 . . . . . . . . . 10 (𝜑 → (4 · 𝑋) ∈ ℂ)
878, 9binom2subadd 32704 . . . . . . . . . . 11 (𝜑 → (((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4 · (𝑋 · 1)))
888mulridd 11151 . . . . . . . . . . . 12 (𝜑 → (𝑋 · 1) = 𝑋)
8988oveq2d 7369 . . . . . . . . . . 11 (𝜑 → (4 · (𝑋 · 1)) = (4 · 𝑋))
9087, 89eqtrd 2764 . . . . . . . . . 10 (𝜑 → (((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4 · 𝑋))
91 subadd2 11386 . . . . . . . . . . 11 ((((𝑋 + 1)↑2) ∈ ℂ ∧ ((𝑋 − 1)↑2) ∈ ℂ ∧ (4 · 𝑋) ∈ ℂ) → ((((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4 · 𝑋) ↔ ((4 · 𝑋) + ((𝑋 − 1)↑2)) = ((𝑋 + 1)↑2)))
9291biimpa 476 . . . . . . . . . 10 (((((𝑋 + 1)↑2) ∈ ℂ ∧ ((𝑋 − 1)↑2) ∈ ℂ ∧ (4 · 𝑋) ∈ ℂ) ∧ (((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4 · 𝑋)) → ((4 · 𝑋) + ((𝑋 − 1)↑2)) = ((𝑋 + 1)↑2))
9384, 85, 86, 90, 92syl31anc 1375 . . . . . . . . 9 (𝜑 → ((4 · 𝑋) + ((𝑋 − 1)↑2)) = ((𝑋 + 1)↑2))
9493oveq1d 7368 . . . . . . . 8 (𝜑 → (((4 · 𝑋) + ((𝑋 − 1)↑2)) / (2↑2)) = (((𝑋 + 1)↑2) / (2↑2)))
9511sqcld 14070 . . . . . . . . 9 (𝜑 → (2↑2) ∈ ℂ)
9686, 85, 95, 74divdird 11957 . . . . . . . 8 (𝜑 → (((4 · 𝑋) + ((𝑋 − 1)↑2)) / (2↑2)) = (((4 · 𝑋) / (2↑2)) + (((𝑋 − 1)↑2) / (2↑2))))
9783, 94, 963eqtr2d 2770 . . . . . . 7 (𝜑 → (((𝑋 + 1) / 2)↑2) = (((4 · 𝑋) / (2↑2)) + (((𝑋 − 1)↑2) / (2↑2))))
9879, 82, 973eqtr4d 2774 . . . . . 6 (𝜑 → (((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2)) = (((𝑋 + 1) / 2)↑2))
9998fveq2d 6830 . . . . 5 (𝜑 → (√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2))) = (√‘(((𝑋 + 1) / 2)↑2)))
10044, 50sqrtsqd 15346 . . . . 5 (𝜑 → (√‘(((𝑋 + 1) / 2)↑2)) = ((𝑋 + 1) / 2))
10199, 100eqtrd 2764 . . . 4 (𝜑 → (√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2))) = ((𝑋 + 1) / 2))
10265, 68, 1013eqtrd 2768 . . 3 (𝜑 → (abs‘((√‘𝑋) − (i · ((𝑋 − 1) / 2)))) = ((𝑋 + 1) / 2))
10351, 54, 1023eqtr4rd 2775 . 2 (𝜑 → (abs‘((√‘𝑋) − (i · ((𝑋 − 1) / 2)))) = (abs‘(((𝑋 + 1) / 2) − 0)))
1042, 4, 26, 31, 2, 33, 34, 41, 103constrlccl 33743 1 (𝜑 → (√‘𝑋) ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029  ici 11030   + caddc 11031   · cmul 11033  cle 11169  cmin 11366  -cneg 11367   / cdiv 11796  2c2 12202  4c4 12204  cz 12490  +crp 12912  cexp 13987  csqrt 15159  abscabs 15160  Constrcconstr 33715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ioc 13272  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-fac 14200  df-bc 14229  df-hash 14257  df-shft 14993  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-limsup 15397  df-clim 15414  df-rlim 15415  df-sum 15613  df-ef 15993  df-sin 15995  df-cos 15996  df-pi 15998  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-cntz 19215  df-cmn 19680  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-lp 23040  df-perf 23041  df-cn 23131  df-cnp 23132  df-haus 23219  df-tx 23466  df-hmeo 23659  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24788  df-limc 25784  df-dv 25785  df-log 26482  df-constr 33716
This theorem is referenced by:  constrsqrtcl  33765
  Copyright terms: Public domain W3C validator