Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrresqrtcl Structured version   Visualization version   GIF version

Theorem constrresqrtcl 33782
Description: If a positive real number 𝑋 is constructible, then, so is its square root. (Contributed by Thierry Arnoux, 5-Nov-2025.)
Hypotheses
Ref Expression
constrresqrtcl.1 (𝜑𝑋 ∈ Constr)
constrresqrtcl.2 (𝜑𝑋 ∈ ℝ)
constrresqrtcl.3 (𝜑 → 0 ≤ 𝑋)
Assertion
Ref Expression
constrresqrtcl (𝜑 → (√‘𝑋) ∈ Constr)

Proof of Theorem constrresqrtcl
StepHypRef Expression
1 0zd 12475 . . 3 (𝜑 → 0 ∈ ℤ)
21zconstr 33769 . 2 (𝜑 → 0 ∈ Constr)
3 1zzd 12498 . . 3 (𝜑 → 1 ∈ ℤ)
43zconstr 33769 . 2 (𝜑 → 1 ∈ Constr)
5 iconstr 33771 . . . 4 i ∈ Constr
65a1i 11 . . 3 (𝜑 → i ∈ Constr)
7 constrresqrtcl.2 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
87recnd 11135 . . . . . 6 (𝜑𝑋 ∈ ℂ)
9 1cnd 11102 . . . . . 6 (𝜑 → 1 ∈ ℂ)
108, 9subcld 11467 . . . . 5 (𝜑 → (𝑋 − 1) ∈ ℂ)
11 2cnd 12198 . . . . 5 (𝜑 → 2 ∈ ℂ)
12 2ne0 12224 . . . . . 6 2 ≠ 0
1312a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
1410, 11, 13divrecd 11895 . . . 4 (𝜑 → ((𝑋 − 1) / 2) = ((𝑋 − 1) · (1 / 2)))
158, 9negsubd 11473 . . . . . 6 (𝜑 → (𝑋 + -1) = (𝑋 − 1))
16 constrresqrtcl.1 . . . . . . 7 (𝜑𝑋 ∈ Constr)
174constrnegcl 33768 . . . . . . 7 (𝜑 → -1 ∈ Constr)
1816, 17constraddcl 33767 . . . . . 6 (𝜑 → (𝑋 + -1) ∈ Constr)
1915, 18eqeltrrd 2832 . . . . 5 (𝜑 → (𝑋 − 1) ∈ Constr)
20 2z 12499 . . . . . . . 8 2 ∈ ℤ
2120a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℤ)
2221zconstr 33769 . . . . . 6 (𝜑 → 2 ∈ Constr)
2322, 13constrinvcl 33778 . . . . 5 (𝜑 → (1 / 2) ∈ Constr)
2419, 23constrmulcl 33776 . . . 4 (𝜑 → ((𝑋 − 1) · (1 / 2)) ∈ Constr)
2514, 24eqeltrd 2831 . . 3 (𝜑 → ((𝑋 − 1) / 2) ∈ Constr)
266, 25constrmulcl 33776 . 2 (𝜑 → (i · ((𝑋 − 1) / 2)) ∈ Constr)
278, 9addcld 11126 . . . 4 (𝜑 → (𝑋 + 1) ∈ ℂ)
2827, 11, 13divrecd 11895 . . 3 (𝜑 → ((𝑋 + 1) / 2) = ((𝑋 + 1) · (1 / 2)))
2916, 4constraddcl 33767 . . . 4 (𝜑 → (𝑋 + 1) ∈ Constr)
3029, 23constrmulcl 33776 . . 3 (𝜑 → ((𝑋 + 1) · (1 / 2)) ∈ Constr)
3128, 30eqeltrd 2831 . 2 (𝜑 → ((𝑋 + 1) / 2) ∈ Constr)
32 constrresqrtcl.3 . . 3 (𝜑 → 0 ≤ 𝑋)
337, 32resqrtcld 15320 . 2 (𝜑 → (√‘𝑋) ∈ ℝ)
3433recnd 11135 . 2 (𝜑 → (√‘𝑋) ∈ ℂ)
359subid1d 11456 . . . . . 6 (𝜑 → (1 − 0) = 1)
3635, 9eqeltrd 2831 . . . . 5 (𝜑 → (1 − 0) ∈ ℂ)
3734, 36mulcld 11127 . . . 4 (𝜑 → ((√‘𝑋) · (1 − 0)) ∈ ℂ)
3837addlidd 11309 . . 3 (𝜑 → (0 + ((√‘𝑋) · (1 − 0))) = ((√‘𝑋) · (1 − 0)))
3935oveq2d 7357 . . 3 (𝜑 → ((√‘𝑋) · (1 − 0)) = ((√‘𝑋) · 1))
4034mulridd 11124 . . 3 (𝜑 → ((√‘𝑋) · 1) = (√‘𝑋))
4138, 39, 403eqtrrd 2771 . 2 (𝜑 → (√‘𝑋) = (0 + ((√‘𝑋) · (1 − 0))))
42 1red 11108 . . . . . 6 (𝜑 → 1 ∈ ℝ)
437, 42readdcld 11136 . . . . 5 (𝜑 → (𝑋 + 1) ∈ ℝ)
4443rehalfcld 12363 . . . 4 (𝜑 → ((𝑋 + 1) / 2) ∈ ℝ)
45 2rp 12890 . . . . . 6 2 ∈ ℝ+
4645a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ+)
47 0red 11110 . . . . . 6 (𝜑 → 0 ∈ ℝ)
487lep1d 12048 . . . . . 6 (𝜑𝑋 ≤ (𝑋 + 1))
4947, 7, 43, 32, 48letrd 11265 . . . . 5 (𝜑 → 0 ≤ (𝑋 + 1))
5043, 46, 49divge0d 12969 . . . 4 (𝜑 → 0 ≤ ((𝑋 + 1) / 2))
5144, 50absidd 15325 . . 3 (𝜑 → (abs‘((𝑋 + 1) / 2)) = ((𝑋 + 1) / 2))
5227halfcld 12361 . . . . 5 (𝜑 → ((𝑋 + 1) / 2) ∈ ℂ)
5352subid1d 11456 . . . 4 (𝜑 → (((𝑋 + 1) / 2) − 0) = ((𝑋 + 1) / 2))
5453fveq2d 6821 . . 3 (𝜑 → (abs‘(((𝑋 + 1) / 2) − 0)) = (abs‘((𝑋 + 1) / 2)))
55 ax-icn 11060 . . . . . . . . 9 i ∈ ℂ
5655a1i 11 . . . . . . . 8 (𝜑 → i ∈ ℂ)
577, 42resubcld 11540 . . . . . . . . . 10 (𝜑 → (𝑋 − 1) ∈ ℝ)
5857rehalfcld 12363 . . . . . . . . 9 (𝜑 → ((𝑋 − 1) / 2) ∈ ℝ)
5958recnd 11135 . . . . . . . 8 (𝜑 → ((𝑋 − 1) / 2) ∈ ℂ)
6056, 59mulneg2d 11566 . . . . . . 7 (𝜑 → (i · -((𝑋 − 1) / 2)) = -(i · ((𝑋 − 1) / 2)))
6160oveq2d 7357 . . . . . 6 (𝜑 → ((√‘𝑋) + (i · -((𝑋 − 1) / 2))) = ((√‘𝑋) + -(i · ((𝑋 − 1) / 2))))
6226constrcn 33765 . . . . . . 7 (𝜑 → (i · ((𝑋 − 1) / 2)) ∈ ℂ)
6334, 62negsubd 11473 . . . . . 6 (𝜑 → ((√‘𝑋) + -(i · ((𝑋 − 1) / 2))) = ((√‘𝑋) − (i · ((𝑋 − 1) / 2))))
6461, 63eqtr2d 2767 . . . . 5 (𝜑 → ((√‘𝑋) − (i · ((𝑋 − 1) / 2))) = ((√‘𝑋) + (i · -((𝑋 − 1) / 2))))
6564fveq2d 6821 . . . 4 (𝜑 → (abs‘((√‘𝑋) − (i · ((𝑋 − 1) / 2)))) = (abs‘((√‘𝑋) + (i · -((𝑋 − 1) / 2)))))
6658renegcld 11539 . . . . 5 (𝜑 → -((𝑋 − 1) / 2) ∈ ℝ)
67 absreim 15195 . . . . 5 (((√‘𝑋) ∈ ℝ ∧ -((𝑋 − 1) / 2) ∈ ℝ) → (abs‘((√‘𝑋) + (i · -((𝑋 − 1) / 2)))) = (√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2))))
6833, 66, 67syl2anc 584 . . . 4 (𝜑 → (abs‘((√‘𝑋) + (i · -((𝑋 − 1) / 2)))) = (√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2))))
69 sq2 14099 . . . . . . . . . . 11 (2↑2) = 4
7069a1i 11 . . . . . . . . . 10 (𝜑 → (2↑2) = 4)
7170oveq2d 7357 . . . . . . . . 9 (𝜑 → ((4 · 𝑋) / (2↑2)) = ((4 · 𝑋) / 4))
72 4cn 12205 . . . . . . . . . . 11 4 ∈ ℂ
7372a1i 11 . . . . . . . . . 10 (𝜑 → 4 ∈ ℂ)
7411, 13, 21expne0d 14054 . . . . . . . . . . 11 (𝜑 → (2↑2) ≠ 0)
7569, 74eqnetrrid 3003 . . . . . . . . . 10 (𝜑 → 4 ≠ 0)
768, 73, 75divcan3d 11897 . . . . . . . . 9 (𝜑 → ((4 · 𝑋) / 4) = 𝑋)
7771, 76eqtr2d 2767 . . . . . . . 8 (𝜑𝑋 = ((4 · 𝑋) / (2↑2)))
7810, 11, 13sqdivd 14061 . . . . . . . 8 (𝜑 → (((𝑋 − 1) / 2)↑2) = (((𝑋 − 1)↑2) / (2↑2)))
7977, 78oveq12d 7359 . . . . . . 7 (𝜑 → (𝑋 + (((𝑋 − 1) / 2)↑2)) = (((4 · 𝑋) / (2↑2)) + (((𝑋 − 1)↑2) / (2↑2))))
808sqsqrtd 15344 . . . . . . . 8 (𝜑 → ((√‘𝑋)↑2) = 𝑋)
8159sqnegd 14018 . . . . . . . 8 (𝜑 → (-((𝑋 − 1) / 2)↑2) = (((𝑋 − 1) / 2)↑2))
8280, 81oveq12d 7359 . . . . . . 7 (𝜑 → (((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2)) = (𝑋 + (((𝑋 − 1) / 2)↑2)))
8327, 11, 13sqdivd 14061 . . . . . . . 8 (𝜑 → (((𝑋 + 1) / 2)↑2) = (((𝑋 + 1)↑2) / (2↑2)))
8427sqcld 14046 . . . . . . . . . 10 (𝜑 → ((𝑋 + 1)↑2) ∈ ℂ)
8510sqcld 14046 . . . . . . . . . 10 (𝜑 → ((𝑋 − 1)↑2) ∈ ℂ)
8673, 8mulcld 11127 . . . . . . . . . 10 (𝜑 → (4 · 𝑋) ∈ ℂ)
878, 9binom2subadd 32717 . . . . . . . . . . 11 (𝜑 → (((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4 · (𝑋 · 1)))
888mulridd 11124 . . . . . . . . . . . 12 (𝜑 → (𝑋 · 1) = 𝑋)
8988oveq2d 7357 . . . . . . . . . . 11 (𝜑 → (4 · (𝑋 · 1)) = (4 · 𝑋))
9087, 89eqtrd 2766 . . . . . . . . . 10 (𝜑 → (((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4 · 𝑋))
91 subadd2 11359 . . . . . . . . . . 11 ((((𝑋 + 1)↑2) ∈ ℂ ∧ ((𝑋 − 1)↑2) ∈ ℂ ∧ (4 · 𝑋) ∈ ℂ) → ((((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4 · 𝑋) ↔ ((4 · 𝑋) + ((𝑋 − 1)↑2)) = ((𝑋 + 1)↑2)))
9291biimpa 476 . . . . . . . . . 10 (((((𝑋 + 1)↑2) ∈ ℂ ∧ ((𝑋 − 1)↑2) ∈ ℂ ∧ (4 · 𝑋) ∈ ℂ) ∧ (((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4 · 𝑋)) → ((4 · 𝑋) + ((𝑋 − 1)↑2)) = ((𝑋 + 1)↑2))
9384, 85, 86, 90, 92syl31anc 1375 . . . . . . . . 9 (𝜑 → ((4 · 𝑋) + ((𝑋 − 1)↑2)) = ((𝑋 + 1)↑2))
9493oveq1d 7356 . . . . . . . 8 (𝜑 → (((4 · 𝑋) + ((𝑋 − 1)↑2)) / (2↑2)) = (((𝑋 + 1)↑2) / (2↑2)))
9511sqcld 14046 . . . . . . . . 9 (𝜑 → (2↑2) ∈ ℂ)
9686, 85, 95, 74divdird 11930 . . . . . . . 8 (𝜑 → (((4 · 𝑋) + ((𝑋 − 1)↑2)) / (2↑2)) = (((4 · 𝑋) / (2↑2)) + (((𝑋 − 1)↑2) / (2↑2))))
9783, 94, 963eqtr2d 2772 . . . . . . 7 (𝜑 → (((𝑋 + 1) / 2)↑2) = (((4 · 𝑋) / (2↑2)) + (((𝑋 − 1)↑2) / (2↑2))))
9879, 82, 973eqtr4d 2776 . . . . . 6 (𝜑 → (((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2)) = (((𝑋 + 1) / 2)↑2))
9998fveq2d 6821 . . . . 5 (𝜑 → (√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2))) = (√‘(((𝑋 + 1) / 2)↑2)))
10044, 50sqrtsqd 15322 . . . . 5 (𝜑 → (√‘(((𝑋 + 1) / 2)↑2)) = ((𝑋 + 1) / 2))
10199, 100eqtrd 2766 . . . 4 (𝜑 → (√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2))) = ((𝑋 + 1) / 2))
10265, 68, 1013eqtrd 2770 . . 3 (𝜑 → (abs‘((√‘𝑋) − (i · ((𝑋 − 1) / 2)))) = ((𝑋 + 1) / 2))
10351, 54, 1023eqtr4rd 2777 . 2 (𝜑 → (abs‘((√‘𝑋) − (i · ((𝑋 − 1) / 2)))) = (abs‘(((𝑋 + 1) / 2) − 0)))
1042, 4, 26, 31, 2, 33, 34, 41, 103constrlccl 33762 1 (𝜑 → (√‘𝑋) ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5086  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002  ici 11003   + caddc 11004   · cmul 11006  cle 11142  cmin 11339  -cneg 11340   / cdiv 11769  2c2 12175  4c4 12177  cz 12463  +crp 12885  cexp 13963  csqrt 15135  abscabs 15136  Constrcconstr 33734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790  df-log 26487  df-constr 33735
This theorem is referenced by:  constrsqrtcl  33784
  Copyright terms: Public domain W3C validator