Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrresqrtcl Structured version   Visualization version   GIF version

Theorem constrresqrtcl 33740
Description: If a positive real number 𝑋 is constructible, then, so is its square root. (Contributed by Thierry Arnoux, 5-Nov-2025.)
Hypotheses
Ref Expression
constrresqrtcl.1 (𝜑𝑋 ∈ Constr)
constrresqrtcl.2 (𝜑𝑋 ∈ ℝ)
constrresqrtcl.3 (𝜑 → 0 ≤ 𝑋)
Assertion
Ref Expression
constrresqrtcl (𝜑 → (√‘𝑋) ∈ Constr)

Proof of Theorem constrresqrtcl
StepHypRef Expression
1 0zd 12517 . . 3 (𝜑 → 0 ∈ ℤ)
21zconstr 33727 . 2 (𝜑 → 0 ∈ Constr)
3 1zzd 12540 . . 3 (𝜑 → 1 ∈ ℤ)
43zconstr 33727 . 2 (𝜑 → 1 ∈ Constr)
5 iconstr 33729 . . . 4 i ∈ Constr
65a1i 11 . . 3 (𝜑 → i ∈ Constr)
7 constrresqrtcl.2 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
87recnd 11178 . . . . . 6 (𝜑𝑋 ∈ ℂ)
9 1cnd 11145 . . . . . 6 (𝜑 → 1 ∈ ℂ)
108, 9subcld 11509 . . . . 5 (𝜑 → (𝑋 − 1) ∈ ℂ)
11 2cnd 12240 . . . . 5 (𝜑 → 2 ∈ ℂ)
12 2ne0 12266 . . . . . 6 2 ≠ 0
1312a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
1410, 11, 13divrecd 11937 . . . 4 (𝜑 → ((𝑋 − 1) / 2) = ((𝑋 − 1) · (1 / 2)))
158, 9negsubd 11515 . . . . . 6 (𝜑 → (𝑋 + -1) = (𝑋 − 1))
16 constrresqrtcl.1 . . . . . . 7 (𝜑𝑋 ∈ Constr)
174constrnegcl 33726 . . . . . . 7 (𝜑 → -1 ∈ Constr)
1816, 17constraddcl 33725 . . . . . 6 (𝜑 → (𝑋 + -1) ∈ Constr)
1915, 18eqeltrrd 2829 . . . . 5 (𝜑 → (𝑋 − 1) ∈ Constr)
20 2z 12541 . . . . . . . 8 2 ∈ ℤ
2120a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℤ)
2221zconstr 33727 . . . . . 6 (𝜑 → 2 ∈ Constr)
2322, 13constrinvcl 33736 . . . . 5 (𝜑 → (1 / 2) ∈ Constr)
2419, 23constrmulcl 33734 . . . 4 (𝜑 → ((𝑋 − 1) · (1 / 2)) ∈ Constr)
2514, 24eqeltrd 2828 . . 3 (𝜑 → ((𝑋 − 1) / 2) ∈ Constr)
266, 25constrmulcl 33734 . 2 (𝜑 → (i · ((𝑋 − 1) / 2)) ∈ Constr)
278, 9addcld 11169 . . . 4 (𝜑 → (𝑋 + 1) ∈ ℂ)
2827, 11, 13divrecd 11937 . . 3 (𝜑 → ((𝑋 + 1) / 2) = ((𝑋 + 1) · (1 / 2)))
2916, 4constraddcl 33725 . . . 4 (𝜑 → (𝑋 + 1) ∈ Constr)
3029, 23constrmulcl 33734 . . 3 (𝜑 → ((𝑋 + 1) · (1 / 2)) ∈ Constr)
3128, 30eqeltrd 2828 . 2 (𝜑 → ((𝑋 + 1) / 2) ∈ Constr)
32 constrresqrtcl.3 . . 3 (𝜑 → 0 ≤ 𝑋)
337, 32resqrtcld 15360 . 2 (𝜑 → (√‘𝑋) ∈ ℝ)
3433recnd 11178 . 2 (𝜑 → (√‘𝑋) ∈ ℂ)
359subid1d 11498 . . . . . 6 (𝜑 → (1 − 0) = 1)
3635, 9eqeltrd 2828 . . . . 5 (𝜑 → (1 − 0) ∈ ℂ)
3734, 36mulcld 11170 . . . 4 (𝜑 → ((√‘𝑋) · (1 − 0)) ∈ ℂ)
3837addlidd 11351 . . 3 (𝜑 → (0 + ((√‘𝑋) · (1 − 0))) = ((√‘𝑋) · (1 − 0)))
3935oveq2d 7385 . . 3 (𝜑 → ((√‘𝑋) · (1 − 0)) = ((√‘𝑋) · 1))
4034mulridd 11167 . . 3 (𝜑 → ((√‘𝑋) · 1) = (√‘𝑋))
4138, 39, 403eqtrrd 2769 . 2 (𝜑 → (√‘𝑋) = (0 + ((√‘𝑋) · (1 − 0))))
42 1red 11151 . . . . . 6 (𝜑 → 1 ∈ ℝ)
437, 42readdcld 11179 . . . . 5 (𝜑 → (𝑋 + 1) ∈ ℝ)
4443rehalfcld 12405 . . . 4 (𝜑 → ((𝑋 + 1) / 2) ∈ ℝ)
45 2rp 12932 . . . . . 6 2 ∈ ℝ+
4645a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ+)
47 0red 11153 . . . . . 6 (𝜑 → 0 ∈ ℝ)
487lep1d 12090 . . . . . 6 (𝜑𝑋 ≤ (𝑋 + 1))
4947, 7, 43, 32, 48letrd 11307 . . . . 5 (𝜑 → 0 ≤ (𝑋 + 1))
5043, 46, 49divge0d 13011 . . . 4 (𝜑 → 0 ≤ ((𝑋 + 1) / 2))
5144, 50absidd 15365 . . 3 (𝜑 → (abs‘((𝑋 + 1) / 2)) = ((𝑋 + 1) / 2))
5227halfcld 12403 . . . . 5 (𝜑 → ((𝑋 + 1) / 2) ∈ ℂ)
5352subid1d 11498 . . . 4 (𝜑 → (((𝑋 + 1) / 2) − 0) = ((𝑋 + 1) / 2))
5453fveq2d 6844 . . 3 (𝜑 → (abs‘(((𝑋 + 1) / 2) − 0)) = (abs‘((𝑋 + 1) / 2)))
55 ax-icn 11103 . . . . . . . . 9 i ∈ ℂ
5655a1i 11 . . . . . . . 8 (𝜑 → i ∈ ℂ)
577, 42resubcld 11582 . . . . . . . . . 10 (𝜑 → (𝑋 − 1) ∈ ℝ)
5857rehalfcld 12405 . . . . . . . . 9 (𝜑 → ((𝑋 − 1) / 2) ∈ ℝ)
5958recnd 11178 . . . . . . . 8 (𝜑 → ((𝑋 − 1) / 2) ∈ ℂ)
6056, 59mulneg2d 11608 . . . . . . 7 (𝜑 → (i · -((𝑋 − 1) / 2)) = -(i · ((𝑋 − 1) / 2)))
6160oveq2d 7385 . . . . . 6 (𝜑 → ((√‘𝑋) + (i · -((𝑋 − 1) / 2))) = ((√‘𝑋) + -(i · ((𝑋 − 1) / 2))))
6226constrcn 33723 . . . . . . 7 (𝜑 → (i · ((𝑋 − 1) / 2)) ∈ ℂ)
6334, 62negsubd 11515 . . . . . 6 (𝜑 → ((√‘𝑋) + -(i · ((𝑋 − 1) / 2))) = ((√‘𝑋) − (i · ((𝑋 − 1) / 2))))
6461, 63eqtr2d 2765 . . . . 5 (𝜑 → ((√‘𝑋) − (i · ((𝑋 − 1) / 2))) = ((√‘𝑋) + (i · -((𝑋 − 1) / 2))))
6564fveq2d 6844 . . . 4 (𝜑 → (abs‘((√‘𝑋) − (i · ((𝑋 − 1) / 2)))) = (abs‘((√‘𝑋) + (i · -((𝑋 − 1) / 2)))))
6658renegcld 11581 . . . . 5 (𝜑 → -((𝑋 − 1) / 2) ∈ ℝ)
67 absreim 15235 . . . . 5 (((√‘𝑋) ∈ ℝ ∧ -((𝑋 − 1) / 2) ∈ ℝ) → (abs‘((√‘𝑋) + (i · -((𝑋 − 1) / 2)))) = (√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2))))
6833, 66, 67syl2anc 584 . . . 4 (𝜑 → (abs‘((√‘𝑋) + (i · -((𝑋 − 1) / 2)))) = (√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2))))
69 sq2 14138 . . . . . . . . . . 11 (2↑2) = 4
7069a1i 11 . . . . . . . . . 10 (𝜑 → (2↑2) = 4)
7170oveq2d 7385 . . . . . . . . 9 (𝜑 → ((4 · 𝑋) / (2↑2)) = ((4 · 𝑋) / 4))
72 4cn 12247 . . . . . . . . . . 11 4 ∈ ℂ
7372a1i 11 . . . . . . . . . 10 (𝜑 → 4 ∈ ℂ)
7411, 13, 21expne0d 14093 . . . . . . . . . . 11 (𝜑 → (2↑2) ≠ 0)
7569, 74eqnetrrid 3000 . . . . . . . . . 10 (𝜑 → 4 ≠ 0)
768, 73, 75divcan3d 11939 . . . . . . . . 9 (𝜑 → ((4 · 𝑋) / 4) = 𝑋)
7771, 76eqtr2d 2765 . . . . . . . 8 (𝜑𝑋 = ((4 · 𝑋) / (2↑2)))
7810, 11, 13sqdivd 14100 . . . . . . . 8 (𝜑 → (((𝑋 − 1) / 2)↑2) = (((𝑋 − 1)↑2) / (2↑2)))
7977, 78oveq12d 7387 . . . . . . 7 (𝜑 → (𝑋 + (((𝑋 − 1) / 2)↑2)) = (((4 · 𝑋) / (2↑2)) + (((𝑋 − 1)↑2) / (2↑2))))
808sqsqrtd 15384 . . . . . . . 8 (𝜑 → ((√‘𝑋)↑2) = 𝑋)
8159sqnegd 14057 . . . . . . . 8 (𝜑 → (-((𝑋 − 1) / 2)↑2) = (((𝑋 − 1) / 2)↑2))
8280, 81oveq12d 7387 . . . . . . 7 (𝜑 → (((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2)) = (𝑋 + (((𝑋 − 1) / 2)↑2)))
8327, 11, 13sqdivd 14100 . . . . . . . 8 (𝜑 → (((𝑋 + 1) / 2)↑2) = (((𝑋 + 1)↑2) / (2↑2)))
8427sqcld 14085 . . . . . . . . . 10 (𝜑 → ((𝑋 + 1)↑2) ∈ ℂ)
8510sqcld 14085 . . . . . . . . . 10 (𝜑 → ((𝑋 − 1)↑2) ∈ ℂ)
8673, 8mulcld 11170 . . . . . . . . . 10 (𝜑 → (4 · 𝑋) ∈ ℂ)
878, 9binom2subadd 32638 . . . . . . . . . . 11 (𝜑 → (((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4 · (𝑋 · 1)))
888mulridd 11167 . . . . . . . . . . . 12 (𝜑 → (𝑋 · 1) = 𝑋)
8988oveq2d 7385 . . . . . . . . . . 11 (𝜑 → (4 · (𝑋 · 1)) = (4 · 𝑋))
9087, 89eqtrd 2764 . . . . . . . . . 10 (𝜑 → (((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4 · 𝑋))
91 subadd2 11401 . . . . . . . . . . 11 ((((𝑋 + 1)↑2) ∈ ℂ ∧ ((𝑋 − 1)↑2) ∈ ℂ ∧ (4 · 𝑋) ∈ ℂ) → ((((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4 · 𝑋) ↔ ((4 · 𝑋) + ((𝑋 − 1)↑2)) = ((𝑋 + 1)↑2)))
9291biimpa 476 . . . . . . . . . 10 (((((𝑋 + 1)↑2) ∈ ℂ ∧ ((𝑋 − 1)↑2) ∈ ℂ ∧ (4 · 𝑋) ∈ ℂ) ∧ (((𝑋 + 1)↑2) − ((𝑋 − 1)↑2)) = (4 · 𝑋)) → ((4 · 𝑋) + ((𝑋 − 1)↑2)) = ((𝑋 + 1)↑2))
9384, 85, 86, 90, 92syl31anc 1375 . . . . . . . . 9 (𝜑 → ((4 · 𝑋) + ((𝑋 − 1)↑2)) = ((𝑋 + 1)↑2))
9493oveq1d 7384 . . . . . . . 8 (𝜑 → (((4 · 𝑋) + ((𝑋 − 1)↑2)) / (2↑2)) = (((𝑋 + 1)↑2) / (2↑2)))
9511sqcld 14085 . . . . . . . . 9 (𝜑 → (2↑2) ∈ ℂ)
9686, 85, 95, 74divdird 11972 . . . . . . . 8 (𝜑 → (((4 · 𝑋) + ((𝑋 − 1)↑2)) / (2↑2)) = (((4 · 𝑋) / (2↑2)) + (((𝑋 − 1)↑2) / (2↑2))))
9783, 94, 963eqtr2d 2770 . . . . . . 7 (𝜑 → (((𝑋 + 1) / 2)↑2) = (((4 · 𝑋) / (2↑2)) + (((𝑋 − 1)↑2) / (2↑2))))
9879, 82, 973eqtr4d 2774 . . . . . 6 (𝜑 → (((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2)) = (((𝑋 + 1) / 2)↑2))
9998fveq2d 6844 . . . . 5 (𝜑 → (√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2))) = (√‘(((𝑋 + 1) / 2)↑2)))
10044, 50sqrtsqd 15362 . . . . 5 (𝜑 → (√‘(((𝑋 + 1) / 2)↑2)) = ((𝑋 + 1) / 2))
10199, 100eqtrd 2764 . . . 4 (𝜑 → (√‘(((√‘𝑋)↑2) + (-((𝑋 − 1) / 2)↑2))) = ((𝑋 + 1) / 2))
10265, 68, 1013eqtrd 2768 . . 3 (𝜑 → (abs‘((√‘𝑋) − (i · ((𝑋 − 1) / 2)))) = ((𝑋 + 1) / 2))
10351, 54, 1023eqtr4rd 2775 . 2 (𝜑 → (abs‘((√‘𝑋) − (i · ((𝑋 − 1) / 2)))) = (abs‘(((𝑋 + 1) / 2) − 0)))
1042, 4, 26, 31, 2, 33, 34, 41, 103constrlccl 33720 1 (𝜑 → (√‘𝑋) ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045  ici 11046   + caddc 11047   · cmul 11049  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  2c2 12217  4c4 12219  cz 12505  +crp 12927  cexp 14002  csqrt 15175  abscabs 15176  Constrcconstr 33692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-constr 33693
This theorem is referenced by:  constrsqrtcl  33742
  Copyright terms: Public domain W3C validator