| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdegnn0cl | Structured version Visualization version GIF version | ||
| Description: Degree of a nonzero polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| mdeg0.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
| mdeg0.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mdeg0.z | ⊢ 0 = (0g‘𝑃) |
| mdegnn0cl.b | ⊢ 𝐵 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| mdegnn0cl | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdeg0.d | . . 3 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
| 2 | mdeg0.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | mdegnn0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 4 | eqid 2731 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2731 | . . 3 ⊢ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
| 6 | eqid 2731 | . . 3 ⊢ (ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ)) = (ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ)) | |
| 7 | mdeg0.z | . . 3 ⊢ 0 = (0g‘𝑃) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | mdegldg 25993 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ∃𝑥 ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ((𝐹‘𝑥) ≠ (0g‘𝑅) ∧ ((ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ))‘𝑥) = (𝐷‘𝐹))) |
| 9 | 5, 6 | tdeglem1 25985 | . . . . . . 7 ⊢ (ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ)):{𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin}⟶ℕ0 |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ)):{𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin}⟶ℕ0) |
| 11 | 10 | ffvelcdmda 7012 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑥 ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin}) → ((ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ))‘𝑥) ∈ ℕ0) |
| 12 | eleq1 2819 | . . . . 5 ⊢ (((ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ))‘𝑥) = (𝐷‘𝐹) → (((ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ))‘𝑥) ∈ ℕ0 ↔ (𝐷‘𝐹) ∈ ℕ0)) | |
| 13 | 11, 12 | syl5ibcom 245 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑥 ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin}) → (((ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ))‘𝑥) = (𝐷‘𝐹) → (𝐷‘𝐹) ∈ ℕ0)) |
| 14 | 13 | adantld 490 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑥 ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin}) → (((𝐹‘𝑥) ≠ (0g‘𝑅) ∧ ((ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ))‘𝑥) = (𝐷‘𝐹)) → (𝐷‘𝐹) ∈ ℕ0)) |
| 15 | 14 | rexlimdva 3133 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (∃𝑥 ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ((𝐹‘𝑥) ≠ (0g‘𝑅) ∧ ((ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ))‘𝑥) = (𝐷‘𝐹)) → (𝐷‘𝐹) ∈ ℕ0)) |
| 16 | 8, 15 | mpd 15 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 {crab 3395 ↦ cmpt 5167 ◡ccnv 5610 “ cima 5614 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ↑m cmap 8745 Fincfn 8864 ℕcn 12120 ℕ0cn0 12376 Basecbs 17115 0gc0g 17338 Σg cgsu 17339 Ringcrg 20146 ℂfldccnfld 21286 mPoly cmpl 21838 mDeg cmdg 25980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-subg 19031 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-ur 20095 df-ring 20148 df-cring 20149 df-cnfld 21287 df-psr 21841 df-mpl 21843 df-mdeg 25982 |
| This theorem is referenced by: deg1nn0cl 26015 |
| Copyright terms: Public domain | W3C validator |