| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdegnn0cl | Structured version Visualization version GIF version | ||
| Description: Degree of a nonzero polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| mdeg0.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
| mdeg0.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mdeg0.z | ⊢ 0 = (0g‘𝑃) |
| mdegnn0cl.b | ⊢ 𝐵 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| mdegnn0cl | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdeg0.d | . . 3 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
| 2 | mdeg0.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | mdegnn0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 4 | eqid 2736 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2736 | . . 3 ⊢ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
| 6 | eqid 2736 | . . 3 ⊢ (ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ)) = (ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ)) | |
| 7 | mdeg0.z | . . 3 ⊢ 0 = (0g‘𝑃) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | mdegldg 26028 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ∃𝑥 ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ((𝐹‘𝑥) ≠ (0g‘𝑅) ∧ ((ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ))‘𝑥) = (𝐷‘𝐹))) |
| 9 | 5, 6 | tdeglem1 26020 | . . . . . . 7 ⊢ (ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ)):{𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin}⟶ℕ0 |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ)):{𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin}⟶ℕ0) |
| 11 | 10 | ffvelcdmda 7079 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑥 ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin}) → ((ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ))‘𝑥) ∈ ℕ0) |
| 12 | eleq1 2823 | . . . . 5 ⊢ (((ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ))‘𝑥) = (𝐷‘𝐹) → (((ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ))‘𝑥) ∈ ℕ0 ↔ (𝐷‘𝐹) ∈ ℕ0)) | |
| 13 | 11, 12 | syl5ibcom 245 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑥 ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin}) → (((ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ))‘𝑥) = (𝐷‘𝐹) → (𝐷‘𝐹) ∈ ℕ0)) |
| 14 | 13 | adantld 490 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑥 ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin}) → (((𝐹‘𝑥) ≠ (0g‘𝑅) ∧ ((ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ))‘𝑥) = (𝐷‘𝐹)) → (𝐷‘𝐹) ∈ ℕ0)) |
| 15 | 14 | rexlimdva 3142 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (∃𝑥 ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ((𝐹‘𝑥) ≠ (0g‘𝑅) ∧ ((ℎ ∈ {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} ↦ (ℂfld Σg ℎ))‘𝑥) = (𝐷‘𝐹)) → (𝐷‘𝐹) ∈ ℕ0)) |
| 16 | 8, 15 | mpd 15 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 {crab 3420 ↦ cmpt 5206 ◡ccnv 5658 “ cima 5662 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 Fincfn 8964 ℕcn 12245 ℕ0cn0 12506 Basecbs 17233 0gc0g 17458 Σg cgsu 17459 Ringcrg 20198 ℂfldccnfld 21320 mPoly cmpl 21871 mDeg cmdg 26015 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-subg 19111 df-cntz 19305 df-cmn 19768 df-abl 19769 df-mgp 20106 df-ur 20147 df-ring 20200 df-cring 20201 df-cnfld 21321 df-psr 21874 df-mpl 21876 df-mdeg 26017 |
| This theorem is referenced by: deg1nn0cl 26050 |
| Copyright terms: Public domain | W3C validator |