| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divmuldivd | Structured version Visualization version GIF version | ||
| Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| divmuldivd.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| divmuldivd.5 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| divmuldivd.6 | ⊢ (𝜑 → 𝐷 ≠ 0) |
| Ref | Expression |
|---|---|
| divmuldivd | ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | divcld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | divmuldivd.5 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
| 6 | divmuldivd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 7 | divmuldivd.6 | . . 3 ⊢ (𝜑 → 𝐷 ≠ 0) | |
| 8 | 6, 7 | jca 511 | . 2 ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) |
| 9 | divmuldiv 11842 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) | |
| 10 | 1, 2, 5, 8, 9 | syl22anc 838 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7353 ℂcc 11026 0cc0 11028 · cmul 11033 / cdiv 11795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 |
| This theorem is referenced by: prodfrec 15820 efcllem 16002 efaddlem 16018 tanaddlem 16093 isprm5 16636 pcpremul 16773 pcqmul 16783 mul4sqlem 16883 dvcnsqrt 26669 mcubic 26773 cubic2 26774 quart1lem 26781 log2tlbnd 26871 basellem5 27011 basellem8 27014 dchrinvcl 27180 dchrmusum2 27421 ttgcontlem1 28848 quad3d 32706 qqhrhm 33955 faclim2 35720 lcmineqlem11 42012 lcmineqlem18 42019 3lexlogpow2ineq2 42032 dvrelogpow2b 42041 aks4d1p1p7 42047 2np3bcnp1 42117 sqrtcval 43614 radcnvrat 44287 bccp1k 44314 dvnprodlem2 45929 wallispilem4 46050 wallispi2lem1 46053 wallispi2lem2 46054 stirlinglem1 46056 stirlinglem3 46058 stirlinglem4 46059 stirlinglem6 46061 stirlinglem10 46065 |
| Copyright terms: Public domain | W3C validator |