MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divmuldivd Structured version   Visualization version   GIF version

Theorem divmuldivd 12082
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
divcld.2 (𝜑𝐵 ∈ ℂ)
divmuld.3 (𝜑𝐶 ∈ ℂ)
divmuldivd.4 (𝜑𝐷 ∈ ℂ)
divmuldivd.5 (𝜑𝐵 ≠ 0)
divmuldivd.6 (𝜑𝐷 ≠ 0)
Assertion
Ref Expression
divmuldivd (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)))

Proof of Theorem divmuldivd
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 divmuld.3 . 2 (𝜑𝐶 ∈ ℂ)
3 divcld.2 . . 3 (𝜑𝐵 ∈ ℂ)
4 divmuldivd.5 . . 3 (𝜑𝐵 ≠ 0)
53, 4jca 511 . 2 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
6 divmuldivd.4 . . 3 (𝜑𝐷 ∈ ℂ)
7 divmuldivd.6 . . 3 (𝜑𝐷 ≠ 0)
86, 7jca 511 . 2 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
9 divmuldiv 11965 . 2 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)))
101, 2, 5, 8, 9syl22anc 839 1 (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  (class class class)co 7431  cc 11151  0cc0 11153   · cmul 11158   / cdiv 11918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919
This theorem is referenced by:  prodfrec  15928  efcllem  16110  efaddlem  16126  tanaddlem  16199  isprm5  16741  pcpremul  16877  pcqmul  16887  mul4sqlem  16987  dvcnsqrt  26801  mcubic  26905  cubic2  26906  quart1lem  26913  log2tlbnd  27003  basellem5  27143  basellem8  27146  dchrinvcl  27312  dchrmusum2  27553  ttgcontlem1  28914  quad3d  32761  qqhrhm  33952  faclim2  35728  lcmineqlem11  42021  lcmineqlem18  42028  3lexlogpow2ineq2  42041  dvrelogpow2b  42050  aks4d1p1p7  42056  2np3bcnp1  42126  sqrtcval  43631  radcnvrat  44310  bccp1k  44337  dvnprodlem2  45903  wallispilem4  46024  wallispi2lem1  46027  wallispi2lem2  46028  stirlinglem1  46030  stirlinglem3  46032  stirlinglem4  46033  stirlinglem6  46035  stirlinglem10  46039
  Copyright terms: Public domain W3C validator