MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divmuldivd Structured version   Visualization version   GIF version

Theorem divmuldivd 12038
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
divcld.2 (𝜑𝐵 ∈ ℂ)
divmuld.3 (𝜑𝐶 ∈ ℂ)
divmuldivd.4 (𝜑𝐷 ∈ ℂ)
divmuldivd.5 (𝜑𝐵 ≠ 0)
divmuldivd.6 (𝜑𝐷 ≠ 0)
Assertion
Ref Expression
divmuldivd (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)))

Proof of Theorem divmuldivd
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 divmuld.3 . 2 (𝜑𝐶 ∈ ℂ)
3 divcld.2 . . 3 (𝜑𝐵 ∈ ℂ)
4 divmuldivd.5 . . 3 (𝜑𝐵 ≠ 0)
53, 4jca 511 . 2 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
6 divmuldivd.4 . . 3 (𝜑𝐷 ∈ ℂ)
7 divmuldivd.6 . . 3 (𝜑𝐷 ≠ 0)
86, 7jca 511 . 2 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
9 divmuldiv 11921 . 2 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)))
101, 2, 5, 8, 9syl22anc 836 1 (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wne 2939  (class class class)co 7412  cc 11114  0cc0 11116   · cmul 11121   / cdiv 11878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879
This theorem is referenced by:  prodfrec  15848  efcllem  16028  efaddlem  16043  tanaddlem  16116  isprm5  16651  pcpremul  16783  pcqmul  16793  mul4sqlem  16893  dvcnsqrt  26593  mcubic  26694  cubic2  26695  quart1lem  26702  log2tlbnd  26792  basellem5  26932  basellem8  26935  dchrinvcl  27101  dchrmusum2  27342  ttgcontlem1  28577  qqhrhm  33435  faclim2  35190  lcmineqlem11  41374  lcmineqlem18  41381  3lexlogpow2ineq2  41394  dvrelogpow2b  41403  aks4d1p1p7  41409  2np3bcnp1  41430  sqrtcval  42858  radcnvrat  43539  bccp1k  43566  dvnprodlem2  45125  wallispilem4  45246  wallispi2lem1  45249  wallispi2lem2  45250  stirlinglem1  45252  stirlinglem3  45254  stirlinglem4  45255  stirlinglem6  45257  stirlinglem10  45261
  Copyright terms: Public domain W3C validator