| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divmuldivd | Structured version Visualization version GIF version | ||
| Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| divmuldivd.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| divmuldivd.5 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| divmuldivd.6 | ⊢ (𝜑 → 𝐷 ≠ 0) |
| Ref | Expression |
|---|---|
| divmuldivd | ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | divcld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | divmuldivd.5 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
| 6 | divmuldivd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 7 | divmuldivd.6 | . . 3 ⊢ (𝜑 → 𝐷 ≠ 0) | |
| 8 | 6, 7 | jca 511 | . 2 ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) |
| 9 | divmuldiv 11889 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) | |
| 10 | 1, 2, 5, 8, 9 | syl22anc 838 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7390 ℂcc 11073 0cc0 11075 · cmul 11080 / cdiv 11842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 |
| This theorem is referenced by: prodfrec 15868 efcllem 16050 efaddlem 16066 tanaddlem 16141 isprm5 16684 pcpremul 16821 pcqmul 16831 mul4sqlem 16931 dvcnsqrt 26660 mcubic 26764 cubic2 26765 quart1lem 26772 log2tlbnd 26862 basellem5 27002 basellem8 27005 dchrinvcl 27171 dchrmusum2 27412 ttgcontlem1 28819 quad3d 32680 qqhrhm 33986 faclim2 35742 lcmineqlem11 42034 lcmineqlem18 42041 3lexlogpow2ineq2 42054 dvrelogpow2b 42063 aks4d1p1p7 42069 2np3bcnp1 42139 sqrtcval 43637 radcnvrat 44310 bccp1k 44337 dvnprodlem2 45952 wallispilem4 46073 wallispi2lem1 46076 wallispi2lem2 46077 stirlinglem1 46079 stirlinglem3 46081 stirlinglem4 46082 stirlinglem6 46084 stirlinglem10 46088 |
| Copyright terms: Public domain | W3C validator |