Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmgmaddnn0 | Structured version Visualization version GIF version |
Description: If 𝐴 is not a nonpositive integer and 𝑁 is a nonnegative integer, then 𝐴 + 𝑁 is also not a nonpositive integer. (Contributed by Mario Carneiro, 6-Jul-2017.) |
Ref | Expression |
---|---|
dmgmn0.a | ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
dmgmaddnn0.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
dmgmaddnn0 | ⊢ (𝜑 → (𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmgmn0.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | |
2 | 1 | eldifad 3903 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | dmgmaddnn0.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
4 | 3 | nn0cnd 12278 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
5 | 2, 4 | addcld 10978 | . 2 ⊢ (𝜑 → (𝐴 + 𝑁) ∈ ℂ) |
6 | eldmgm 26152 | . . . . 5 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) | |
7 | 1, 6 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) |
8 | 7 | simprd 495 | . . 3 ⊢ (𝜑 → ¬ -𝐴 ∈ ℕ0) |
9 | 2, 4 | negdi2d 11329 | . . . . . . 7 ⊢ (𝜑 → -(𝐴 + 𝑁) = (-𝐴 − 𝑁)) |
10 | 9 | oveq1d 7283 | . . . . . 6 ⊢ (𝜑 → (-(𝐴 + 𝑁) + 𝑁) = ((-𝐴 − 𝑁) + 𝑁)) |
11 | 2 | negcld 11302 | . . . . . . 7 ⊢ (𝜑 → -𝐴 ∈ ℂ) |
12 | 11, 4 | npcand 11319 | . . . . . 6 ⊢ (𝜑 → ((-𝐴 − 𝑁) + 𝑁) = -𝐴) |
13 | 10, 12 | eqtrd 2779 | . . . . 5 ⊢ (𝜑 → (-(𝐴 + 𝑁) + 𝑁) = -𝐴) |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → (-(𝐴 + 𝑁) + 𝑁) = -𝐴) |
15 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → -(𝐴 + 𝑁) ∈ ℕ0) | |
16 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℕ0) |
17 | 15, 16 | nn0addcld 12280 | . . . 4 ⊢ ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → (-(𝐴 + 𝑁) + 𝑁) ∈ ℕ0) |
18 | 14, 17 | eqeltrrd 2841 | . . 3 ⊢ ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → -𝐴 ∈ ℕ0) |
19 | 8, 18 | mtand 812 | . 2 ⊢ (𝜑 → ¬ -(𝐴 + 𝑁) ∈ ℕ0) |
20 | eldmgm 26152 | . 2 ⊢ ((𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ ((𝐴 + 𝑁) ∈ ℂ ∧ ¬ -(𝐴 + 𝑁) ∈ ℕ0)) | |
21 | 5, 19, 20 | sylanbrc 582 | 1 ⊢ (𝜑 → (𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∖ cdif 3888 (class class class)co 7268 ℂcc 10853 + caddc 10858 − cmin 11188 -cneg 11189 ℕcn 11956 ℕ0cn0 12216 ℤcz 12302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 |
This theorem is referenced by: lgamcvg2 26185 gamp1 26188 |
Copyright terms: Public domain | W3C validator |