| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmgmaddnn0 | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is not a nonpositive integer and 𝑁 is a nonnegative integer, then 𝐴 + 𝑁 is also not a nonpositive integer. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| Ref | Expression |
|---|---|
| dmgmn0.a | ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
| dmgmaddnn0.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| dmgmaddnn0 | ⊢ (𝜑 → (𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmgmn0.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | |
| 2 | 1 | eldifad 3909 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | dmgmaddnn0.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 4 | 3 | nn0cnd 12444 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 5 | 2, 4 | addcld 11131 | . 2 ⊢ (𝜑 → (𝐴 + 𝑁) ∈ ℂ) |
| 6 | eldmgm 26959 | . . . . 5 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) | |
| 7 | 1, 6 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) |
| 8 | 7 | simprd 495 | . . 3 ⊢ (𝜑 → ¬ -𝐴 ∈ ℕ0) |
| 9 | 2, 4 | negdi2d 11486 | . . . . . . 7 ⊢ (𝜑 → -(𝐴 + 𝑁) = (-𝐴 − 𝑁)) |
| 10 | 9 | oveq1d 7361 | . . . . . 6 ⊢ (𝜑 → (-(𝐴 + 𝑁) + 𝑁) = ((-𝐴 − 𝑁) + 𝑁)) |
| 11 | 2 | negcld 11459 | . . . . . . 7 ⊢ (𝜑 → -𝐴 ∈ ℂ) |
| 12 | 11, 4 | npcand 11476 | . . . . . 6 ⊢ (𝜑 → ((-𝐴 − 𝑁) + 𝑁) = -𝐴) |
| 13 | 10, 12 | eqtrd 2766 | . . . . 5 ⊢ (𝜑 → (-(𝐴 + 𝑁) + 𝑁) = -𝐴) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → (-(𝐴 + 𝑁) + 𝑁) = -𝐴) |
| 15 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → -(𝐴 + 𝑁) ∈ ℕ0) | |
| 16 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℕ0) |
| 17 | 15, 16 | nn0addcld 12446 | . . . 4 ⊢ ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → (-(𝐴 + 𝑁) + 𝑁) ∈ ℕ0) |
| 18 | 14, 17 | eqeltrrd 2832 | . . 3 ⊢ ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → -𝐴 ∈ ℕ0) |
| 19 | 8, 18 | mtand 815 | . 2 ⊢ (𝜑 → ¬ -(𝐴 + 𝑁) ∈ ℕ0) |
| 20 | eldmgm 26959 | . 2 ⊢ ((𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ ((𝐴 + 𝑁) ∈ ℂ ∧ ¬ -(𝐴 + 𝑁) ∈ ℕ0)) | |
| 21 | 5, 19, 20 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 (class class class)co 7346 ℂcc 11004 + caddc 11009 − cmin 11344 -cneg 11345 ℕcn 12125 ℕ0cn0 12381 ℤcz 12468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 |
| This theorem is referenced by: lgamcvg2 26992 gamp1 26995 |
| Copyright terms: Public domain | W3C validator |