MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmgmaddnn0 Structured version   Visualization version   GIF version

Theorem dmgmaddnn0 27085
Description: If 𝐴 is not a nonpositive integer and 𝑁 is a nonnegative integer, then 𝐴 + 𝑁 is also not a nonpositive integer. (Contributed by Mario Carneiro, 6-Jul-2017.)
Hypotheses
Ref Expression
dmgmn0.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
dmgmaddnn0.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
dmgmaddnn0 (𝜑 → (𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ)))

Proof of Theorem dmgmaddnn0
StepHypRef Expression
1 dmgmn0.a . . . 4 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
21eldifad 3975 . . 3 (𝜑𝐴 ∈ ℂ)
3 dmgmaddnn0.n . . . 4 (𝜑𝑁 ∈ ℕ0)
43nn0cnd 12587 . . 3 (𝜑𝑁 ∈ ℂ)
52, 4addcld 11278 . 2 (𝜑 → (𝐴 + 𝑁) ∈ ℂ)
6 eldmgm 27080 . . . . 5 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))
71, 6sylib 218 . . . 4 (𝜑 → (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))
87simprd 495 . . 3 (𝜑 → ¬ -𝐴 ∈ ℕ0)
92, 4negdi2d 11632 . . . . . . 7 (𝜑 → -(𝐴 + 𝑁) = (-𝐴𝑁))
109oveq1d 7446 . . . . . 6 (𝜑 → (-(𝐴 + 𝑁) + 𝑁) = ((-𝐴𝑁) + 𝑁))
112negcld 11605 . . . . . . 7 (𝜑 → -𝐴 ∈ ℂ)
1211, 4npcand 11622 . . . . . 6 (𝜑 → ((-𝐴𝑁) + 𝑁) = -𝐴)
1310, 12eqtrd 2775 . . . . 5 (𝜑 → (-(𝐴 + 𝑁) + 𝑁) = -𝐴)
1413adantr 480 . . . 4 ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → (-(𝐴 + 𝑁) + 𝑁) = -𝐴)
15 simpr 484 . . . . 5 ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → -(𝐴 + 𝑁) ∈ ℕ0)
163adantr 480 . . . . 5 ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℕ0)
1715, 16nn0addcld 12589 . . . 4 ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → (-(𝐴 + 𝑁) + 𝑁) ∈ ℕ0)
1814, 17eqeltrrd 2840 . . 3 ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → -𝐴 ∈ ℕ0)
198, 18mtand 816 . 2 (𝜑 → ¬ -(𝐴 + 𝑁) ∈ ℕ0)
20 eldmgm 27080 . 2 ((𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ ((𝐴 + 𝑁) ∈ ℂ ∧ ¬ -(𝐴 + 𝑁) ∈ ℕ0))
215, 19, 20sylanbrc 583 1 (𝜑 → (𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  cdif 3960  (class class class)co 7431  cc 11151   + caddc 11156  cmin 11490  -cneg 11491  cn 12264  0cn0 12524  cz 12611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612
This theorem is referenced by:  lgamcvg2  27113  gamp1  27116
  Copyright terms: Public domain W3C validator