MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmgmaddnn0 Structured version   Visualization version   GIF version

Theorem dmgmaddnn0 26944
Description: If 𝐴 is not a nonpositive integer and 𝑁 is a nonnegative integer, then 𝐴 + 𝑁 is also not a nonpositive integer. (Contributed by Mario Carneiro, 6-Jul-2017.)
Hypotheses
Ref Expression
dmgmn0.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
dmgmaddnn0.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
dmgmaddnn0 (𝜑 → (𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ)))

Proof of Theorem dmgmaddnn0
StepHypRef Expression
1 dmgmn0.a . . . 4 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
21eldifad 3929 . . 3 (𝜑𝐴 ∈ ℂ)
3 dmgmaddnn0.n . . . 4 (𝜑𝑁 ∈ ℕ0)
43nn0cnd 12512 . . 3 (𝜑𝑁 ∈ ℂ)
52, 4addcld 11200 . 2 (𝜑 → (𝐴 + 𝑁) ∈ ℂ)
6 eldmgm 26939 . . . . 5 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))
71, 6sylib 218 . . . 4 (𝜑 → (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))
87simprd 495 . . 3 (𝜑 → ¬ -𝐴 ∈ ℕ0)
92, 4negdi2d 11554 . . . . . . 7 (𝜑 → -(𝐴 + 𝑁) = (-𝐴𝑁))
109oveq1d 7405 . . . . . 6 (𝜑 → (-(𝐴 + 𝑁) + 𝑁) = ((-𝐴𝑁) + 𝑁))
112negcld 11527 . . . . . . 7 (𝜑 → -𝐴 ∈ ℂ)
1211, 4npcand 11544 . . . . . 6 (𝜑 → ((-𝐴𝑁) + 𝑁) = -𝐴)
1310, 12eqtrd 2765 . . . . 5 (𝜑 → (-(𝐴 + 𝑁) + 𝑁) = -𝐴)
1413adantr 480 . . . 4 ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → (-(𝐴 + 𝑁) + 𝑁) = -𝐴)
15 simpr 484 . . . . 5 ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → -(𝐴 + 𝑁) ∈ ℕ0)
163adantr 480 . . . . 5 ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℕ0)
1715, 16nn0addcld 12514 . . . 4 ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → (-(𝐴 + 𝑁) + 𝑁) ∈ ℕ0)
1814, 17eqeltrrd 2830 . . 3 ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → -𝐴 ∈ ℕ0)
198, 18mtand 815 . 2 (𝜑 → ¬ -(𝐴 + 𝑁) ∈ ℕ0)
20 eldmgm 26939 . 2 ((𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ ((𝐴 + 𝑁) ∈ ℂ ∧ ¬ -(𝐴 + 𝑁) ∈ ℕ0))
215, 19, 20sylanbrc 583 1 (𝜑 → (𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3914  (class class class)co 7390  cc 11073   + caddc 11078  cmin 11412  -cneg 11413  cn 12193  0cn0 12449  cz 12536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537
This theorem is referenced by:  lgamcvg2  26972  gamp1  26975
  Copyright terms: Public domain W3C validator