Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0addcld | Structured version Visualization version GIF version |
Description: Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
nn0addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0addcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0red.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
2 | nn0addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ0) | |
3 | nn0addcl 12198 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ0) |
Copyright terms: Public domain | W3C validator |