![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addridi | Structured version Visualization version GIF version |
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addridi | ⊢ (𝐴 + 0) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addrid 11470 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 0cc0 11184 + caddc 11187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 |
This theorem is referenced by: 1p0e1 12417 9p1e10 12760 num0u 12769 numnncl2 12781 decrmanc 12815 decaddi 12818 decaddci 12819 decmul1 12822 decmulnc 12825 fsumrelem 15855 bpoly4 16107 demoivreALT 16249 decexp2 17122 decsplit0 17128 37prm 17168 43prm 17169 139prm 17171 163prm 17172 317prm 17173 631prm 17174 1259lem2 17179 1259lem3 17180 1259lem4 17181 1259lem5 17182 2503lem1 17184 2503lem2 17185 2503lem3 17186 4001lem1 17188 4001lem2 17189 4001lem3 17190 4001lem4 17191 sinhalfpilem 26523 efipi 26533 asin1 26955 log2ublem3 27009 log2ub 27010 emcllem6 27062 lgam1 27125 ip2i 30860 pythi 30882 normlem6 31147 normpythi 31174 normpari 31186 pjneli 31755 dp20u 32842 1mhdrd 32880 ballotth 34502 hgt750lemd 34625 hgt750lem2 34629 420gcd8e4 41963 60lcm7e420 41967 420lcm8e840 41968 3lexlogpow5ineq1 42011 3lexlogpow5ineq5 42017 dirkertrigeqlem3 46021 fourierdlem103 46130 fourierdlem104 46131 fouriersw 46152 257prm 47435 fmtno4nprmfac193 47448 fmtno5faclem3 47455 fmtno5fac 47456 139prmALT 47470 127prm 47473 m11nprm 47475 |
Copyright terms: Public domain | W3C validator |