MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addridi Structured version   Visualization version   GIF version

Theorem addridi 11321
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1 𝐴 ∈ ℂ
Assertion
Ref Expression
addridi (𝐴 + 0) = 𝐴

Proof of Theorem addridi
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 addrid 11314 . 2 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
31, 2ax-mp 5 1 (𝐴 + 0) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7353  cc 11026  0cc0 11028   + caddc 11031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173
This theorem is referenced by:  1p0e1  12265  9p1e10  12611  num0u  12620  numnncl2  12632  decrmanc  12666  decaddi  12669  decaddci  12670  decmul1  12673  decmulnc  12676  fsumrelem  15732  bpoly4  15984  demoivreALT  16128  decsplit0  17010  37prm  17050  43prm  17051  139prm  17053  163prm  17054  317prm  17055  631prm  17056  1259lem2  17061  1259lem3  17062  1259lem4  17063  1259lem5  17064  2503lem1  17066  2503lem2  17067  2503lem3  17068  4001lem1  17070  4001lem2  17071  4001lem3  17072  4001lem4  17073  sinhalfpilem  26388  efipi  26398  asin1  26820  log2ublem3  26874  log2ub  26875  emcllem6  26927  lgam1  26990  ip2i  30790  pythi  30812  normlem6  31077  normpythi  31104  normpari  31116  pjneli  31685  dp20u  32831  1mhdrd  32869  ballotth  34505  hgt750lemd  34615  hgt750lem2  34619  420gcd8e4  41979  60lcm7e420  41983  420lcm8e840  41984  3lexlogpow5ineq1  42027  3lexlogpow5ineq5  42033  dirkertrigeqlem3  46082  fourierdlem103  46191  fourierdlem104  46192  fouriersw  46213  257prm  47546  fmtno4nprmfac193  47559  fmtno5faclem3  47566  fmtno5fac  47567  139prmALT  47581  127prm  47584  m11nprm  47586
  Copyright terms: Public domain W3C validator