| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addridi | Structured version Visualization version GIF version | ||
| Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addridi | ⊢ (𝐴 + 0) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addrid 11290 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 0cc0 11003 + caddc 11006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 |
| This theorem is referenced by: 1p0e1 12241 9p1e10 12587 num0u 12596 numnncl2 12608 decrmanc 12642 decaddi 12645 decaddci 12646 decmul1 12649 decmulnc 12652 fsumrelem 15711 bpoly4 15963 demoivreALT 16107 decsplit0 16989 37prm 17029 43prm 17030 139prm 17032 163prm 17033 317prm 17034 631prm 17035 1259lem2 17040 1259lem3 17041 1259lem4 17042 1259lem5 17043 2503lem1 17045 2503lem2 17046 2503lem3 17047 4001lem1 17049 4001lem2 17050 4001lem3 17051 4001lem4 17052 sinhalfpilem 26397 efipi 26407 asin1 26829 log2ublem3 26883 log2ub 26884 emcllem6 26936 lgam1 26999 ip2i 30803 pythi 30825 normlem6 31090 normpythi 31117 normpari 31129 pjneli 31698 dp20u 32853 1mhdrd 32891 ballotth 34546 hgt750lemd 34656 hgt750lem2 34660 420gcd8e4 42038 60lcm7e420 42042 420lcm8e840 42043 3lexlogpow5ineq1 42086 3lexlogpow5ineq5 42092 dirkertrigeqlem3 46137 fourierdlem103 46246 fourierdlem104 46247 fouriersw 46268 257prm 47591 fmtno4nprmfac193 47604 fmtno5faclem3 47611 fmtno5fac 47612 139prmALT 47626 127prm 47629 m11nprm 47631 |
| Copyright terms: Public domain | W3C validator |