| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addridi | Structured version Visualization version GIF version | ||
| Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addridi | ⊢ (𝐴 + 0) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addrid 11314 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 0cc0 11028 + caddc 11031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 |
| This theorem is referenced by: 1p0e1 12265 9p1e10 12611 num0u 12620 numnncl2 12632 decrmanc 12666 decaddi 12669 decaddci 12670 decmul1 12673 decmulnc 12676 fsumrelem 15732 bpoly4 15984 demoivreALT 16128 decsplit0 17010 37prm 17050 43prm 17051 139prm 17053 163prm 17054 317prm 17055 631prm 17056 1259lem2 17061 1259lem3 17062 1259lem4 17063 1259lem5 17064 2503lem1 17066 2503lem2 17067 2503lem3 17068 4001lem1 17070 4001lem2 17071 4001lem3 17072 4001lem4 17073 sinhalfpilem 26388 efipi 26398 asin1 26820 log2ublem3 26874 log2ub 26875 emcllem6 26927 lgam1 26990 ip2i 30790 pythi 30812 normlem6 31077 normpythi 31104 normpari 31116 pjneli 31685 dp20u 32831 1mhdrd 32869 ballotth 34505 hgt750lemd 34615 hgt750lem2 34619 420gcd8e4 41979 60lcm7e420 41983 420lcm8e840 41984 3lexlogpow5ineq1 42027 3lexlogpow5ineq5 42033 dirkertrigeqlem3 46082 fourierdlem103 46191 fourierdlem104 46192 fouriersw 46213 257prm 47546 fmtno4nprmfac193 47559 fmtno5faclem3 47566 fmtno5fac 47567 139prmALT 47581 127prm 47584 m11nprm 47586 |
| Copyright terms: Public domain | W3C validator |