![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addridi | Structured version Visualization version GIF version |
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addridi | ⊢ (𝐴 + 0) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addrid 11439 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 0cc0 11153 + caddc 11156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 |
This theorem is referenced by: 1p0e1 12388 9p1e10 12733 num0u 12742 numnncl2 12754 decrmanc 12788 decaddi 12791 decaddci 12792 decmul1 12795 decmulnc 12798 fsumrelem 15840 bpoly4 16092 demoivreALT 16234 decexp2 17109 decsplit0 17115 37prm 17155 43prm 17156 139prm 17158 163prm 17159 317prm 17160 631prm 17161 1259lem2 17166 1259lem3 17167 1259lem4 17168 1259lem5 17169 2503lem1 17171 2503lem2 17172 2503lem3 17173 4001lem1 17175 4001lem2 17176 4001lem3 17177 4001lem4 17178 sinhalfpilem 26520 efipi 26530 asin1 26952 log2ublem3 27006 log2ub 27007 emcllem6 27059 lgam1 27122 ip2i 30857 pythi 30879 normlem6 31144 normpythi 31171 normpari 31183 pjneli 31752 dp20u 32845 1mhdrd 32883 ballotth 34519 hgt750lemd 34642 hgt750lem2 34646 420gcd8e4 41988 60lcm7e420 41992 420lcm8e840 41993 3lexlogpow5ineq1 42036 3lexlogpow5ineq5 42042 dirkertrigeqlem3 46056 fourierdlem103 46165 fourierdlem104 46166 fouriersw 46187 257prm 47486 fmtno4nprmfac193 47499 fmtno5faclem3 47506 fmtno5fac 47507 139prmALT 47521 127prm 47524 m11nprm 47526 |
Copyright terms: Public domain | W3C validator |