MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addridi Structured version   Visualization version   GIF version

Theorem addridi 11368
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1 𝐴 ∈ ℂ
Assertion
Ref Expression
addridi (𝐴 + 0) = 𝐴

Proof of Theorem addridi
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 addrid 11361 . 2 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
31, 2ax-mp 5 1 (𝐴 + 0) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7390  cc 11073  0cc0 11075   + caddc 11078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220
This theorem is referenced by:  1p0e1  12312  9p1e10  12658  num0u  12667  numnncl2  12679  decrmanc  12713  decaddi  12716  decaddci  12717  decmul1  12720  decmulnc  12723  fsumrelem  15780  bpoly4  16032  demoivreALT  16176  decsplit0  17058  37prm  17098  43prm  17099  139prm  17101  163prm  17102  317prm  17103  631prm  17104  1259lem2  17109  1259lem3  17110  1259lem4  17111  1259lem5  17112  2503lem1  17114  2503lem2  17115  2503lem3  17116  4001lem1  17118  4001lem2  17119  4001lem3  17120  4001lem4  17121  sinhalfpilem  26379  efipi  26389  asin1  26811  log2ublem3  26865  log2ub  26866  emcllem6  26918  lgam1  26981  ip2i  30764  pythi  30786  normlem6  31051  normpythi  31078  normpari  31090  pjneli  31659  dp20u  32805  1mhdrd  32843  ballotth  34536  hgt750lemd  34646  hgt750lem2  34650  420gcd8e4  42001  60lcm7e420  42005  420lcm8e840  42006  3lexlogpow5ineq1  42049  3lexlogpow5ineq5  42055  dirkertrigeqlem3  46105  fourierdlem103  46214  fourierdlem104  46215  fouriersw  46236  257prm  47566  fmtno4nprmfac193  47579  fmtno5faclem3  47586  fmtno5fac  47587  139prmALT  47601  127prm  47604  m11nprm  47606
  Copyright terms: Public domain W3C validator