| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addridi | Structured version Visualization version GIF version | ||
| Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addridi | ⊢ (𝐴 + 0) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addrid 11354 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 0cc0 11068 + caddc 11071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 |
| This theorem is referenced by: 1p0e1 12305 9p1e10 12651 num0u 12660 numnncl2 12672 decrmanc 12706 decaddi 12709 decaddci 12710 decmul1 12713 decmulnc 12716 fsumrelem 15773 bpoly4 16025 demoivreALT 16169 decsplit0 17051 37prm 17091 43prm 17092 139prm 17094 163prm 17095 317prm 17096 631prm 17097 1259lem2 17102 1259lem3 17103 1259lem4 17104 1259lem5 17105 2503lem1 17107 2503lem2 17108 2503lem3 17109 4001lem1 17111 4001lem2 17112 4001lem3 17113 4001lem4 17114 sinhalfpilem 26372 efipi 26382 asin1 26804 log2ublem3 26858 log2ub 26859 emcllem6 26911 lgam1 26974 ip2i 30757 pythi 30779 normlem6 31044 normpythi 31071 normpari 31083 pjneli 31652 dp20u 32798 1mhdrd 32836 ballotth 34529 hgt750lemd 34639 hgt750lem2 34643 420gcd8e4 41994 60lcm7e420 41998 420lcm8e840 41999 3lexlogpow5ineq1 42042 3lexlogpow5ineq5 42048 dirkertrigeqlem3 46098 fourierdlem103 46207 fourierdlem104 46208 fouriersw 46229 257prm 47562 fmtno4nprmfac193 47575 fmtno5faclem3 47582 fmtno5fac 47583 139prmALT 47597 127prm 47600 m11nprm 47602 |
| Copyright terms: Public domain | W3C validator |