| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addridi | Structured version Visualization version GIF version | ||
| Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addridi | ⊢ (𝐴 + 0) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addrid 11361 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 0cc0 11075 + caddc 11078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 |
| This theorem is referenced by: 1p0e1 12312 9p1e10 12658 num0u 12667 numnncl2 12679 decrmanc 12713 decaddi 12716 decaddci 12717 decmul1 12720 decmulnc 12723 fsumrelem 15780 bpoly4 16032 demoivreALT 16176 decsplit0 17058 37prm 17098 43prm 17099 139prm 17101 163prm 17102 317prm 17103 631prm 17104 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 2503lem1 17114 2503lem2 17115 2503lem3 17116 4001lem1 17118 4001lem2 17119 4001lem3 17120 4001lem4 17121 sinhalfpilem 26379 efipi 26389 asin1 26811 log2ublem3 26865 log2ub 26866 emcllem6 26918 lgam1 26981 ip2i 30764 pythi 30786 normlem6 31051 normpythi 31078 normpari 31090 pjneli 31659 dp20u 32805 1mhdrd 32843 ballotth 34536 hgt750lemd 34646 hgt750lem2 34650 420gcd8e4 42001 60lcm7e420 42005 420lcm8e840 42006 3lexlogpow5ineq1 42049 3lexlogpow5ineq5 42055 dirkertrigeqlem3 46105 fourierdlem103 46214 fourierdlem104 46215 fouriersw 46236 257prm 47566 fmtno4nprmfac193 47579 fmtno5faclem3 47586 fmtno5fac 47587 139prmALT 47601 127prm 47604 m11nprm 47606 |
| Copyright terms: Public domain | W3C validator |