![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addridi | Structured version Visualization version GIF version |
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addridi | ⊢ (𝐴 + 0) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addrid 11401 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 (class class class)co 7412 ℂcc 11114 0cc0 11116 + caddc 11119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-ltxr 11260 |
This theorem is referenced by: 1p0e1 12343 9p1e10 12686 num0u 12695 numnncl2 12707 decrmanc 12741 decaddi 12744 decaddci 12745 decmul1 12748 decmulnc 12751 fsumrelem 15760 bpoly4 16010 demoivreALT 16151 decexp2 17015 decsplit0 17021 37prm 17061 43prm 17062 139prm 17064 163prm 17065 317prm 17066 631prm 17067 1259lem2 17072 1259lem3 17073 1259lem4 17074 1259lem5 17075 2503lem1 17077 2503lem2 17078 2503lem3 17079 4001lem1 17081 4001lem2 17082 4001lem3 17083 4001lem4 17084 sinhalfpilem 26313 efipi 26323 asin1 26740 log2ublem3 26794 log2ub 26795 emcllem6 26846 lgam1 26909 ip2i 30514 pythi 30536 normlem6 30801 normpythi 30828 normpari 30840 pjneli 31409 dp20u 32477 1mhdrd 32515 ballotth 34000 hgt750lemd 34124 hgt750lem2 34128 420gcd8e4 41338 60lcm7e420 41342 420lcm8e840 41343 3lexlogpow5ineq1 41386 3lexlogpow5ineq5 41392 dirkertrigeqlem3 45275 fourierdlem103 45384 fourierdlem104 45385 fouriersw 45406 257prm 46688 fmtno4nprmfac193 46701 fmtno5faclem3 46708 fmtno5fac 46709 139prmALT 46723 127prm 46726 m11nprm 46728 |
Copyright terms: Public domain | W3C validator |