| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addridi | Structured version Visualization version GIF version | ||
| Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addridi | ⊢ (𝐴 + 0) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addrid 11300 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 0cc0 11013 + caddc 11016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 |
| This theorem is referenced by: 1p0e1 12251 9p1e10 12596 num0u 12605 numnncl2 12617 decrmanc 12651 decaddi 12654 decaddci 12655 decmul1 12658 decmulnc 12661 fsumrelem 15716 bpoly4 15968 demoivreALT 16112 decsplit0 16994 37prm 17034 43prm 17035 139prm 17037 163prm 17038 317prm 17039 631prm 17040 1259lem2 17045 1259lem3 17046 1259lem4 17047 1259lem5 17048 2503lem1 17050 2503lem2 17051 2503lem3 17052 4001lem1 17054 4001lem2 17055 4001lem3 17056 4001lem4 17057 sinhalfpilem 26400 efipi 26410 asin1 26832 log2ublem3 26886 log2ub 26887 emcllem6 26939 lgam1 27002 ip2i 30810 pythi 30832 normlem6 31097 normpythi 31124 normpari 31136 pjneli 31705 dp20u 32865 1mhdrd 32903 ballotth 34572 hgt750lemd 34682 hgt750lem2 34686 420gcd8e4 42119 60lcm7e420 42123 420lcm8e840 42124 3lexlogpow5ineq1 42167 3lexlogpow5ineq5 42173 dirkertrigeqlem3 46222 fourierdlem103 46331 fourierdlem104 46332 fouriersw 46353 257prm 47685 fmtno4nprmfac193 47698 fmtno5faclem3 47705 fmtno5fac 47706 139prmALT 47720 127prm 47723 m11nprm 47725 |
| Copyright terms: Public domain | W3C validator |