Proof of Theorem dvdsadd2b
| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1192 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∈ ℤ) |
| 2 | | simpl3l 1229 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐶 ∈ ℤ) |
| 3 | | simpl2 1193 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐵 ∈ ℤ) |
| 4 | | simpl3r 1230 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∥ 𝐶) |
| 5 | | simpr 484 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∥ 𝐵) |
| 6 | 1, 2, 3, 4, 5 | dvds2addd 16311 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∥ (𝐶 + 𝐵)) |
| 7 | | simpl1 1192 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∈ ℤ) |
| 8 | | simp3l 1202 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → 𝐶 ∈ ℤ) |
| 9 | | simp2 1137 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → 𝐵 ∈ ℤ) |
| 10 | | zaddcl 12632 |
. . . . . 6
⊢ ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℤ) |
| 11 | 8, 9, 10 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐶 + 𝐵) ∈ ℤ) |
| 12 | 11 | adantr 480 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → (𝐶 + 𝐵) ∈ ℤ) |
| 13 | 8 | znegcld 12699 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → -𝐶 ∈ ℤ) |
| 14 | 13 | adantr 480 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → -𝐶 ∈ ℤ) |
| 15 | | simpr 484 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ (𝐶 + 𝐵)) |
| 16 | | simpl3r 1230 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ 𝐶) |
| 17 | | simpl3l 1229 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐶 ∈ ℤ) |
| 18 | | dvdsnegb 16293 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ 𝐶 ↔ 𝐴 ∥ -𝐶)) |
| 19 | 7, 17, 18 | syl2anc 584 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → (𝐴 ∥ 𝐶 ↔ 𝐴 ∥ -𝐶)) |
| 20 | 16, 19 | mpbid 232 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ -𝐶) |
| 21 | 7, 12, 14, 15, 20 | dvds2addd 16311 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ ((𝐶 + 𝐵) + -𝐶)) |
| 22 | | simpl2 1193 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐵 ∈ ℤ) |
| 23 | 10 | ancoms 458 |
. . . . . . 7
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℤ) |
| 24 | 23 | zcnd 12698 |
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℂ) |
| 25 | | zcn 12593 |
. . . . . . 7
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
ℂ) |
| 26 | 25 | adantl 481 |
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈
ℂ) |
| 27 | 24, 26 | negsubd 11600 |
. . . . 5
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) + -𝐶) = ((𝐶 + 𝐵) − 𝐶)) |
| 28 | | zcn 12593 |
. . . . . . 7
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℂ) |
| 29 | 28 | adantr 480 |
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈
ℂ) |
| 30 | 26, 29 | pncan2d 11596 |
. . . . 5
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) − 𝐶) = 𝐵) |
| 31 | 27, 30 | eqtrd 2770 |
. . . 4
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) + -𝐶) = 𝐵) |
| 32 | 22, 17, 31 | syl2anc 584 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → ((𝐶 + 𝐵) + -𝐶) = 𝐵) |
| 33 | 21, 32 | breqtrd 5145 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ 𝐵) |
| 34 | 6, 33 | impbida 800 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵))) |