Proof of Theorem dvdsadd2b
Step | Hyp | Ref
| Expression |
1 | | simpl1 1189 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∈ ℤ) |
2 | | simpl3l 1226 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐶 ∈ ℤ) |
3 | | simpl2 1190 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐵 ∈ ℤ) |
4 | | simpl3r 1227 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∥ 𝐶) |
5 | | simpr 484 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∥ 𝐵) |
6 | 1, 2, 3, 4, 5 | dvds2addd 15929 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∥ (𝐶 + 𝐵)) |
7 | | simpl1 1189 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∈ ℤ) |
8 | | simp3l 1199 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → 𝐶 ∈ ℤ) |
9 | | simp2 1135 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → 𝐵 ∈ ℤ) |
10 | | zaddcl 12290 |
. . . . . 6
⊢ ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℤ) |
11 | 8, 9, 10 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐶 + 𝐵) ∈ ℤ) |
12 | 11 | adantr 480 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → (𝐶 + 𝐵) ∈ ℤ) |
13 | 8 | znegcld 12357 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → -𝐶 ∈ ℤ) |
14 | 13 | adantr 480 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → -𝐶 ∈ ℤ) |
15 | | simpr 484 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ (𝐶 + 𝐵)) |
16 | | simpl3r 1227 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ 𝐶) |
17 | | simpl3l 1226 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐶 ∈ ℤ) |
18 | | dvdsnegb 15911 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ 𝐶 ↔ 𝐴 ∥ -𝐶)) |
19 | 7, 17, 18 | syl2anc 583 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → (𝐴 ∥ 𝐶 ↔ 𝐴 ∥ -𝐶)) |
20 | 16, 19 | mpbid 231 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ -𝐶) |
21 | 7, 12, 14, 15, 20 | dvds2addd 15929 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ ((𝐶 + 𝐵) + -𝐶)) |
22 | | simpl2 1190 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐵 ∈ ℤ) |
23 | 10 | ancoms 458 |
. . . . . . 7
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℤ) |
24 | 23 | zcnd 12356 |
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℂ) |
25 | | zcn 12254 |
. . . . . . 7
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
ℂ) |
26 | 25 | adantl 481 |
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈
ℂ) |
27 | 24, 26 | negsubd 11268 |
. . . . 5
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) + -𝐶) = ((𝐶 + 𝐵) − 𝐶)) |
28 | | zcn 12254 |
. . . . . . 7
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℂ) |
29 | 28 | adantr 480 |
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈
ℂ) |
30 | 26, 29 | pncan2d 11264 |
. . . . 5
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) − 𝐶) = 𝐵) |
31 | 27, 30 | eqtrd 2778 |
. . . 4
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) + -𝐶) = 𝐵) |
32 | 22, 17, 31 | syl2anc 583 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → ((𝐶 + 𝐵) + -𝐶) = 𝐵) |
33 | 21, 32 | breqtrd 5096 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ 𝐵) |
34 | 6, 33 | impbida 797 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵))) |