MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsadd2b Structured version   Visualization version   GIF version

Theorem dvdsadd2b 15648
Description: Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
dvdsadd2b ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))

Proof of Theorem dvdsadd2b
StepHypRef Expression
1 simpl1 1188 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐴 ∈ ℤ)
2 simpl3l 1225 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐶 ∈ ℤ)
3 simpl2 1189 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐵 ∈ ℤ)
4 simpl3r 1226 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐴𝐶)
5 simpr 488 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐴𝐵)
6 dvds2add 15635 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐶𝐴𝐵) → 𝐴 ∥ (𝐶 + 𝐵)))
76imp 410 . . 3 (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴𝐶𝐴𝐵)) → 𝐴 ∥ (𝐶 + 𝐵))
81, 2, 3, 4, 5, 7syl32anc 1375 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐴 ∥ (𝐶 + 𝐵))
9 simpl1 1188 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∈ ℤ)
10 simp3l 1198 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐶 ∈ ℤ)
11 simp2 1134 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵 ∈ ℤ)
12 zaddcl 12010 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℤ)
1310, 11, 12syl2anc 587 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐶 + 𝐵) ∈ ℤ)
1413adantr 484 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → (𝐶 + 𝐵) ∈ ℤ)
1510znegcld 12077 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → -𝐶 ∈ ℤ)
1615adantr 484 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → -𝐶 ∈ ℤ)
17 simpr 488 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ (𝐶 + 𝐵))
18 simpl3r 1226 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴𝐶)
19 simpl3l 1225 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐶 ∈ ℤ)
20 dvdsnegb 15619 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴𝐶𝐴 ∥ -𝐶))
219, 19, 20syl2anc 587 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → (𝐴𝐶𝐴 ∥ -𝐶))
2218, 21mpbid 235 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ -𝐶)
23 dvds2add 15635 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ ∧ -𝐶 ∈ ℤ) → ((𝐴 ∥ (𝐶 + 𝐵) ∧ 𝐴 ∥ -𝐶) → 𝐴 ∥ ((𝐶 + 𝐵) + -𝐶)))
2423imp 410 . . . 4 (((𝐴 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ ∧ -𝐶 ∈ ℤ) ∧ (𝐴 ∥ (𝐶 + 𝐵) ∧ 𝐴 ∥ -𝐶)) → 𝐴 ∥ ((𝐶 + 𝐵) + -𝐶))
259, 14, 16, 17, 22, 24syl32anc 1375 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ ((𝐶 + 𝐵) + -𝐶))
26 simpl2 1189 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐵 ∈ ℤ)
2712ancoms 462 . . . . . . 7 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℤ)
2827zcnd 12076 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℂ)
29 zcn 11974 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
3029adantl 485 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
3128, 30negsubd 10992 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) + -𝐶) = ((𝐶 + 𝐵) − 𝐶))
32 zcn 11974 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
3332adantr 484 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℂ)
3430, 33pncan2d 10988 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) − 𝐶) = 𝐵)
3531, 34eqtrd 2833 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) + -𝐶) = 𝐵)
3626, 19, 35syl2anc 587 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → ((𝐶 + 𝐵) + -𝐶) = 𝐵)
3725, 36breqtrd 5056 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴𝐵)
388, 37impbida 800 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5030  (class class class)co 7135  cc 10524   + caddc 10529  cmin 10859  -cneg 10860  cz 11969  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-dvds 15600
This theorem is referenced by:  dvdsaddre2b  15649  3dvdsdec  15673  3dvds2dec  15674  2sqlem3  26004  2sqblem  26015  eupth2lem3lem3  28015  jm2.19lem2  39931
  Copyright terms: Public domain W3C validator