Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0dig2pr01 Structured version   Visualization version   GIF version

Theorem 0dig2pr01 44886
Description: The integers 0 and 1 correspond to their last bit. (Contributed by AV, 28-May-2010.)
Assertion
Ref Expression
0dig2pr01 (𝑁 ∈ {0, 1} → (0(digit‘2)𝑁) = 𝑁)

Proof of Theorem 0dig2pr01
StepHypRef Expression
1 elpri 4571 . 2 (𝑁 ∈ {0, 1} → (𝑁 = 0 ∨ 𝑁 = 1))
2 2nn 11703 . . . . 5 2 ∈ ℕ
3 0z 11985 . . . . 5 0 ∈ ℤ
4 dig0 44882 . . . . 5 ((2 ∈ ℕ ∧ 0 ∈ ℤ) → (0(digit‘2)0) = 0)
52, 3, 4mp2an 691 . . . 4 (0(digit‘2)0) = 0
6 oveq2 7153 . . . 4 (𝑁 = 0 → (0(digit‘2)𝑁) = (0(digit‘2)0))
7 id 22 . . . 4 (𝑁 = 0 → 𝑁 = 0)
85, 6, 73eqtr4a 2885 . . 3 (𝑁 = 0 → (0(digit‘2)𝑁) = 𝑁)
9 2z 12007 . . . . 5 2 ∈ ℤ
10 uzid 12251 . . . . 5 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
11 0dig1 44885 . . . . 5 (2 ∈ (ℤ‘2) → (0(digit‘2)1) = 1)
129, 10, 11mp2b 10 . . . 4 (0(digit‘2)1) = 1
13 oveq2 7153 . . . 4 (𝑁 = 1 → (0(digit‘2)𝑁) = (0(digit‘2)1))
14 id 22 . . . 4 (𝑁 = 1 → 𝑁 = 1)
1512, 13, 143eqtr4a 2885 . . 3 (𝑁 = 1 → (0(digit‘2)𝑁) = 𝑁)
168, 15jaoi 854 . 2 ((𝑁 = 0 ∨ 𝑁 = 1) → (0(digit‘2)𝑁) = 𝑁)
171, 16syl 17 1 (𝑁 ∈ {0, 1} → (0(digit‘2)𝑁) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844   = wceq 1538  wcel 2115  {cpr 4551  cfv 6343  (class class class)co 7145  0cc0 10529  1c1 10530  cn 11630  2c2 11685  cz 11974  cuz 12236  digitcdig 44871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-sup 8897  df-inf 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-n0 11891  df-z 11975  df-uz 12237  df-rp 12383  df-ico 12737  df-fl 13162  df-mod 13238  df-seq 13370  df-exp 13431  df-dig 44872
This theorem is referenced by:  nn0sumshdiglemB  44896  nn0sumshdiglem2  44898
  Copyright terms: Public domain W3C validator