![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0dig2pr01 | Structured version Visualization version GIF version |
Description: The integers 0 and 1 correspond to their last bit. (Contributed by AV, 28-May-2010.) |
Ref | Expression |
---|---|
0dig2pr01 | β’ (π β {0, 1} β (0(digitβ2)π) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4650 | . 2 β’ (π β {0, 1} β (π = 0 β¨ π = 1)) | |
2 | 2nn 12284 | . . . . 5 β’ 2 β β | |
3 | 0z 12568 | . . . . 5 β’ 0 β β€ | |
4 | dig0 47282 | . . . . 5 β’ ((2 β β β§ 0 β β€) β (0(digitβ2)0) = 0) | |
5 | 2, 3, 4 | mp2an 690 | . . . 4 β’ (0(digitβ2)0) = 0 |
6 | oveq2 7416 | . . . 4 β’ (π = 0 β (0(digitβ2)π) = (0(digitβ2)0)) | |
7 | id 22 | . . . 4 β’ (π = 0 β π = 0) | |
8 | 5, 6, 7 | 3eqtr4a 2798 | . . 3 β’ (π = 0 β (0(digitβ2)π) = π) |
9 | 2z 12593 | . . . . 5 β’ 2 β β€ | |
10 | uzid 12836 | . . . . 5 β’ (2 β β€ β 2 β (β€β₯β2)) | |
11 | 0dig1 47285 | . . . . 5 β’ (2 β (β€β₯β2) β (0(digitβ2)1) = 1) | |
12 | 9, 10, 11 | mp2b 10 | . . . 4 β’ (0(digitβ2)1) = 1 |
13 | oveq2 7416 | . . . 4 β’ (π = 1 β (0(digitβ2)π) = (0(digitβ2)1)) | |
14 | id 22 | . . . 4 β’ (π = 1 β π = 1) | |
15 | 12, 13, 14 | 3eqtr4a 2798 | . . 3 β’ (π = 1 β (0(digitβ2)π) = π) |
16 | 8, 15 | jaoi 855 | . 2 β’ ((π = 0 β¨ π = 1) β (0(digitβ2)π) = π) |
17 | 1, 16 | syl 17 | 1 β’ (π β {0, 1} β (0(digitβ2)π) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ wo 845 = wceq 1541 β wcel 2106 {cpr 4630 βcfv 6543 (class class class)co 7408 0cc0 11109 1c1 11110 βcn 12211 2c2 12266 β€cz 12557 β€β₯cuz 12821 digitcdig 47271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-ico 13329 df-fl 13756 df-mod 13834 df-seq 13966 df-exp 14027 df-dig 47272 |
This theorem is referenced by: nn0sumshdiglemB 47296 nn0sumshdiglem2 47298 |
Copyright terms: Public domain | W3C validator |