Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0dig2pr01 | Structured version Visualization version GIF version |
Description: The integers 0 and 1 correspond to their last bit. (Contributed by AV, 28-May-2010.) |
Ref | Expression |
---|---|
0dig2pr01 | ⊢ (𝑁 ∈ {0, 1} → (0(digit‘2)𝑁) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4577 | . 2 ⊢ (𝑁 ∈ {0, 1} → (𝑁 = 0 ∨ 𝑁 = 1)) | |
2 | 2nn 11927 | . . . . 5 ⊢ 2 ∈ ℕ | |
3 | 0z 12211 | . . . . 5 ⊢ 0 ∈ ℤ | |
4 | dig0 45653 | . . . . 5 ⊢ ((2 ∈ ℕ ∧ 0 ∈ ℤ) → (0(digit‘2)0) = 0) | |
5 | 2, 3, 4 | mp2an 692 | . . . 4 ⊢ (0(digit‘2)0) = 0 |
6 | oveq2 7239 | . . . 4 ⊢ (𝑁 = 0 → (0(digit‘2)𝑁) = (0(digit‘2)0)) | |
7 | id 22 | . . . 4 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
8 | 5, 6, 7 | 3eqtr4a 2805 | . . 3 ⊢ (𝑁 = 0 → (0(digit‘2)𝑁) = 𝑁) |
9 | 2z 12233 | . . . . 5 ⊢ 2 ∈ ℤ | |
10 | uzid 12477 | . . . . 5 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
11 | 0dig1 45656 | . . . . 5 ⊢ (2 ∈ (ℤ≥‘2) → (0(digit‘2)1) = 1) | |
12 | 9, 10, 11 | mp2b 10 | . . . 4 ⊢ (0(digit‘2)1) = 1 |
13 | oveq2 7239 | . . . 4 ⊢ (𝑁 = 1 → (0(digit‘2)𝑁) = (0(digit‘2)1)) | |
14 | id 22 | . . . 4 ⊢ (𝑁 = 1 → 𝑁 = 1) | |
15 | 12, 13, 14 | 3eqtr4a 2805 | . . 3 ⊢ (𝑁 = 1 → (0(digit‘2)𝑁) = 𝑁) |
16 | 8, 15 | jaoi 857 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 = 1) → (0(digit‘2)𝑁) = 𝑁) |
17 | 1, 16 | syl 17 | 1 ⊢ (𝑁 ∈ {0, 1} → (0(digit‘2)𝑁) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 = wceq 1543 ∈ wcel 2111 {cpr 4557 ‘cfv 6397 (class class class)co 7231 0cc0 10753 1c1 10754 ℕcn 11854 2c2 11909 ℤcz 12200 ℤ≥cuz 12462 digitcdig 45642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 ax-pre-sup 10831 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-1st 7779 df-2nd 7780 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-er 8411 df-en 8647 df-dom 8648 df-sdom 8649 df-sup 9082 df-inf 9083 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-div 11514 df-nn 11855 df-2 11917 df-n0 12115 df-z 12201 df-uz 12463 df-rp 12611 df-ico 12965 df-fl 13391 df-mod 13467 df-seq 13599 df-exp 13660 df-dig 45643 |
This theorem is referenced by: nn0sumshdiglemB 45667 nn0sumshdiglem2 45669 |
Copyright terms: Public domain | W3C validator |